フェーズ15テスト

GaNの信頼性と寿命の予測: フェーズ15

Ricardo Garcia, Siddhesh Gajare, Ph.D., Angel Espinoza, Max Zafrani, Alejandro Pozo, Ph.D., Shengke Zhang, Ph.D., Efficient Power Conversion

多くの多様なアプリケーションでGaNデバイスの採用を加速するためには、信頼性統計の継続的な蓄積と、集積回路(IC)を含む GaNデバイスの故障の基本的な物理の調査が必要です。実験室で得られたデータを確認するか、ミッションの耐久性に関する新 たな疑問に耳を貸すか、実際の世界の経験からの情報を探すことも必要です。このフェーズ15の信頼性レポートは、故障するま でテストするという方法を使った継続的な作業を文書化し、太陽光発電用オプティマイザ、Lidar(光による検出と距離の測定) 用センサー、およびDC-DCコンバータに対する特定の信頼性指標と予測を追加します。

追加の標準認証テストが必要

標準の品質認証テストに加えて、故障するまでのテス トをするのは、なぜですか?

半導体の標準的な品質認証テストでは通常、データシートに指定されている限界、またはその近くで、長期間、または特定のサイクル数でデバイスにストレスを加えます。標準的な品質認証テストの目標は、テストされた比較的多数の部品グループにおいて故障をゼロにすることです。

この種の品質認定テストは、特定のテスト条件に合格した部品 のみを報告するため、不十分です。部品を故障点までテストする ことによって、データシートの制限との間のマージンの量を理解 することができ、さらに重要なことは、固有の故障メカニズムを 理解することができます。固有の故障メカニズム、故障の根本 原因、および時間、温度、電気的または機械的ストレスに対する このメカニズムの振る舞いを知ることによって、製品の安全な 動作寿命を、より一般的な一連の動作条件で決定できます(半 導体デバイスが故障するまでテストするという方法の優れた説 明については、参考文献[1]を参照してください)。

GaNパワー・デバイスに対する主なストレス条件と固 有の故障メカニズム

GaNパワー・デバイスが遭遇する主なストレス条件は何ですか? 各ストレス条件に対する固有の故障メカニズムは何ですか?

すべてのパワー・トランジスタと同様に、主なストレス条件に は、電圧、電流、温度、湿度、および、さまざまな機械的ストレ スがあります。ただし、これらのストレス条件を適用する多くの 方法があります。例えば、GaNトランジスタの電圧ストレスは、 ゲート端子からソース端子(V_{GS})へ、および、ドレイン端子から ソース端子(V_{DS})へ印加することができます。例えば、これらの ストレスは、直流バイアスとして継続的に加えること、オンとオ フを繰り返すこと、高速パルスとして加えることもできます。電 流ストレスは、直流の連続電流またはパルス電流として加える ことができます。熱ストレスは、一定期間、所望の極端な温度 でデバイスを動作させることによって連続的に加えること、また は、温度をさまざまな方法で循環させることができます。

かなりの数の故障が発生する所まで、これらの各条件でデバ イスにストレスをかけることによって、テスト対象のデバイスの 主な固有の故障メカニズムを決めることができます。妥当な時 間で故障を発生させるためには、ストレス条件は通常、製品の データシートの制限を大幅に超える必要があります。ある過 度のストレス条件が、通常の動作中に決して遭遇することがない故障メカニズム を引きこさないように注意しなければなりません。過度のストレス条件が故障を 引き起こさないことを確認するために、故障した部品は、故障の根本原因を特定 するために、慎重に調べる必要があります。根本的な原因を検証することによって のみ、さまざまなストレス条件下でのデバイスの動作を完全に理解することがで きます。eGaN®デバイスの固有の故障モードについての理解が深まるにつれて、2 つの事実が明らかになったことに注目してください;(1) eGaNデバイスはSiベース のMOSFETよりも丈夫であり、(2) 極端な、または長期の電気的ストレス条件下で eGaNデバイスの寿命を予測するとき、MOSFETの固有の故障モデルは有効ではあ りません。

表1の左側の列には、組み立て中または動作中にトランジスタが受ける可能性のあ るさまざまなストレス源がすべてリストされています。左から3番目の列にリストさ れているさまざまなテスト方法を使って、デバイスを故障する点に到達させること で、固有の故障メカニズムを発見できます。このレポートの執筆時点で確認された 故障メカニズムを右側の列に示しています。

ストレス源	デバイス/ パッケージ	テスト方法	固有の故障メカニズム
		HTGB	絶縁破損 (TDDB)
雪中	デバイフ		しさい値シフト
		HTRB	
		ESD	絶縁破壊
雪法	デバイフ	直法雪法 (FM)	エレクトロマイグレーション
电观	,,,,,,		サーモマイグレーション
 雷流→雷圧(雷力)	デバイフ	SOA	熱暴走
电机「电压(电力)	7717	回路の短絡	熱暴走
電圧の立ち上がり/ 降下	デバイス	ハードスイッチングの 信頼性	R _{DS(on)} シフト
電流の立ち上がり/ 降下	デバイス	パルス回路 (Lidarの信頼性)	問題なし
温度	パッケージ	HTS	問題なし
		MSL1	問題なし
		H3TRB	問題なし
湿度	パッケージ	AC	問題なし
		はんだ付け性	はんだ腐食
		uHAST	柱状突起の形成/腐食
		TC	はんだ疲労
		IOL	はんだ疲労
		曲げカテスト	層間剥離
機械的/熱機械的	パッケージ	曲げカテスト	はんだ強度
	-	曲げカテスト	
		チップのせん断	はんだ強度
		パッケージ圧力	フィルムの欠け

表1:GaNトランジスタのストレス条件と固有の故障メカニズム

このレポートの焦点と構造

このレポートで説明されている最初のトピック (セクション1) は、GaNデ バイスのゲート電極に影響を与える固有の故障メカニズムです。このセク ションでは、フェーズ14のレポート [2] で最初に導き出された物理ベース の寿命モデルの概要を示します。

2番目のトピック(セクション2)では、動的オン抵抗R_{DS(on)}の原因となる 固有のメカニズムをまとめました。ゲート・ストレスのセクションと同様 に、動的R_{DS(on)}の作業は、R_{DS(on)}の変化に関連するeGaNトランジスタの すべての既知の動作を説明するフェーズ14のレポートの物理ベースのモ デルの開発を通じて強化されます。したがって、このモデルは、より複雑 なミッション・プロファイルにおける寿命の予測に最も役立ちます。

セクション3は、GaNデバイスの安全動作領域 (SOA) に焦点を当てていま す。このテーマは、シリコン・ベースのパワーMOSFETで広く調査されてお り、高いドレイン・バイアス条件下での有用性を制限する2次破壊メカニ ズムが観測されています [3]。いくつかのGaN製品は、データシートのSOA 全体にわたって徹底的にテストされ、その後、安全マージンの調査で故障 させました。すべての場合において、データは、データシートのSOA内で動 作するときにGaNトランジスタが故障しないことを示しています。

セクション4では、eGaNデバイスが回路の短絡条件下で破壊されるまで テストします。この目的は、壊滅的な故障が発生する前に、どのくらいの 時間、どのようなエネルギー密度に耐えられるかを判断することです。こ の情報は、回路設計に短絡保護を含める必要のある産業用パワーやモ ーター駆動の技術者にとって不可欠です。

セクション5では、ウエハー・レベルのチップスケール・パッケージ (WLCSP:wafer level chip-scale package)の機械的圧力テストの問 題を説明します。チップせん断(面内圧力)に対する故障するまでのテス トの結果は、MIL-STD-883Eの推奨値を超える耐久性を実証しています。 背面(面外)圧力テストは、パッケージが不具合なく400 psiの能力があ ることを示しています。曲げ力テストでは、はんだ接合の耐久性を調べ、 デバイスの電気的パラメータを変調する可能性のある任意の圧電効果を 探ります。すべてのデバイスは、テスト規格Q200-005Aに基づいて4 mm のたわみ(250 N)に合格し、最初の不具合は、6 mmのたわみで発生し ました。電気的パラメータの変化は、観測されませんでした。このセクシ ョンの終わりに、デバイスを物理的に破壊するために必要な曲げ力が、 圧電的に生成された場の変調によって電気的特性を変化させるために 必要な力よりも、はるかに小さいことが示されています。 セクション6では、温度サイクルと、自己発熱に基づく温度サイクルの両 方によって発生する熱機械的応力の問題について説明します。寿命予測 を実験的に求めるために、アンダーフィル製品を広範に調査しました。こ のセクションの最後にある有限要素解析で、実験結果を説明し、主な材 料特性に基づいてアンダーフィルを選択するためのガイドラインを示し ます。

セクション7から9で、EPCはアプリケーション固有のミッション・プロファイルを使って、デバイスをテストし、モデル化しました。例えば、GaNデバイスは、自動運転車、トラック、ロボット、民生用電子機器、ドローンで使われるLidar(光による検出と距離の測定)機器に広く採用されています。GaNデバイスの高速スイッチング速度、小型、大パルス電流能力によって、より高い解像度で、より遠くを「見る」というLidarシステムの能力が強化されます。Lidarシステムでは、シリコンで経験したことのない動的な電圧と電流(di/dtおよびdv/dt)の限界を押し上げます。フェーズ14の信頼性レポートでは、GaNデバイスが13兆パルス以上(一般的な自動車の寿命の約3倍)にわたって、故障や重大なパラメータのドリフトなしで合格したことを文書化しました。

このフェーズ15のレポートでは、データシートの制限を超えたストレスが かかった場合でも、GaN ICが高度な耐久性を備えていることを確認する 品質認定試験と、故障するまでのテストに関する新しいデータが報告さ れています。

セクション8では、EPCの寿命モデルの広範なライブラリーを適用して、 屋根の上の太陽光発電設備の厳しい要件の下で、1%以下の故障率で25 年以上のGaNデバイスの寿命を実証しています。

最後から2番目のセクション (セクション9) では、DC-DCバック (降圧型)・コンバータと同期整流器のGaNデバイスの以前に報告したモデリン グをまとめて、極端な繰り返し電圧オーバーシュート条件下でのGaNパ ワー・デバイスの劣化を予測します。

目	次	
1.	セクション1:ゲートの電圧/温度ストレス	4
2.	セクション2:ドレインの電圧/温度ストレス	5
	2.1 物理ベースの動的オン抵抗R _{DS(on)} と寿命モデル	6
	2.2 スイッチング周波数とスイッチング電流の影響	6
	2.3 より高いストレス電圧の影響	7
	2.4 物理ベースの動的R _{DS(on})モデルの結論	8
3.	セクション3:安全動作領域	8
4.	セクション4:短絡の耐久性テスト	9
5.	セクション 5:機械的応力	.12
	5.1 チップのせん断テスト	.12
	5.2 背面圧力テスト	.12
	5.3 曲げ力テスト	.13
6.	セクション6:熱機械的応力	.13
	6.1 適切なアンダーフィルを選択する基準	.14
	6.2 温度サイクル下でのアンダーフィルの調査	.14
	6.3 断続動作寿命の調査	.15
	6.4 アンダーフィルを選択するためのガイドライン	.16
7.	セクション7:GaNオン・シリコンのレーザー・ドライバの信頼性テスト結果	.16
	7.1 大電流パルス下での長期安定性	.16
	7.2 GaNオン・シリコンのモノリシック・レーザー・ドライバ IC	.17
	7.2.1 品質認定テストの概要	.17
	7.2.2 故障するまでテストするという方法	.19
	7.2.3 Lidar(光による検出と距離の測定)用途向けeToFレーザー・ドライバICの主なストレス源.	.19
	7.2.4 V _{DD} 、論理電源電圧	.20
	7.2.5 V _D 、レーザー駆動電圧	.23
	7.2.6 動作周波数	.24
8.	セクション8:故障するまでテストする方法を使って、太陽光発電用途でeGaN	
	テバイスが25年以上使えるかどうかを正確に予測する	.24
		.25
	8.2 ドレインのストレス	.25
	8.3 熱機械的応力	.26
	8.4 宇宙線	.29
9.	セクション9:DC-DCコンバータ	.30
	9.1 電流依存のホット・エレクトロンのトラップ・モテル	.30
	9.2 48 V人力、12 V出力のLLC同期整流器	.31
	9.2.1 40 VのGaNトランジスタ:事例1と2	.32
	9.2.2 30 VのGaNトランジスタ:事例3と4	.32
	9.3 48 V人力、12 V出力のバック・コンバータ	.33
	9.3.1 ローサイドGaNトランジスタ	.33
	9.3.2 ハイサイドGaNトランジスタ	.35
_	9.4 現実世界の重要な使用事例へのモデルの適用のまとめ	.36
10	• まとめ	.36
参	考又献	.36

フェーズ15テスト

セクション1:ゲートの電圧/温度ストレス

フェーズ14の信頼性レポートに示されている作業に基づいて、p-GaNゲートに適用可能な寿命方程式を導出するためのすべての数学的要素がそろいました:

$$MTTF = \frac{Q_{c}}{G} = \frac{qQ_{c}}{\alpha_{n}J_{n}} = \frac{A}{(1-c\Delta T)} exp\left[\left(\frac{B}{V+V_{0}}\right)^{m}\right]$$

以下にリストしたパラメータを使います:

- m = 1.9
- $V_0 = 1.0 V$
- B = 57.0 V
- $A = 1.7 \times 10^{-6} \text{ s}$
- $c = 6.5 \times 10^{-3} K^{-1}$

寿命方程式 (式1) は、図1のEPC2212のごく最近測定された加速データに 対してプロットされています。この適合を生成するために、AとBを除く式1の すべてのパラメータを固定しました。この結果として得られたBの最適適合 は、(ゲートの厚さで除算して電界に変換した場合)、 b_n =7.6 × 10⁶ V/cmの 値になり、Ooi氏の値7.2 × 10⁶ V/cm [4] と非常によく一致しています。

図2は、−75℃、25℃、125℃での寿命方程式の温度依存性を示して います。温度依存性(パラメータcに含まれる)は、データに適合せず に、Ozbekから直接得られます。高温では平均故障時間(MTTF:Mean Time to Failure)がわずかに大きくなることに注意してください。これ は、フェーズ14のレポートで報告された測定データと一致しています。

このゲート寿命モデルは、代表的なGaN製品 (EPC2212) の加速ゲート・ テストを通じて特定された独自の特性のすべての視点を含めることによ って開発されました。図1のデータは、ゲート・バイアスを最大定格電圧 (V_{GS} = 6 V) 以下に維持する場合、eGaNデバイスは、連続直流バイアス 下で10年間の寿命の間、故障率が1 ppm以下にならなければなりませ ん。この予想された結果は、ゲートの故障に関するEPC の現場での経験 と一致しています。

1.2 ゲート寿命モデルの物理ベースの導出に関する結論

GaNトランジスタのゲート寿命の衝突電離モデル(式1)は、観測された 多くの要因をうまく説明しています:

- ・MTTFの正の温度係数(これは、故障の半導体物理では珍しいことです)。
- ・ゲート・バイアスによる非常に高い加速、およびゲート・バイアスの減 少時における指数関数よりも急な加速。
- ブレークダウンをはるかに下回る公称電界強度での高品質Si₃N₄膜による誘電体破壊(正孔注入と隣接するp-GaN領域からのトラップの結果として)。

この寿命方程式は、MOSFET用に開発された標準的な信頼性モデルの 本体から単純に借用したものではありません。その代わりに、これは、特 にGaNトランジスタに適用可能な故障の根本的な物理から構築された 最初のゲート寿命モデルを表しています。

図1:25℃でのEPC2212のMTTF(最近の測定)とV_{GS}の関係(およびエラ ー・バー)は、4つの異なる電圧レッグについて示されています。実線は、衝 突電離寿命モデルに対応しています。100 ppm、10 ppm、1 ppmの故障 するまでの時間の外挿も示しました。

図2:4つの異なるゲート・バイアスで測定されたEPC2212(25℃)の MTTF。青色の線は寿命モデル。赤色と緑色の線は、それぞれ125℃ と-75℃での寿命モデルの予測です。

4

フェーズ15テスト

セクション2:ドレインの電圧/温度ストレス

同じ故障するまでのテストは、他のすべてのストレス条件に適応させることができます。例えば、GaNトランジスタのユーザーに共通する懸念の1つは、動的オン抵抗R_{DS(on)}です。これは、デバイスが高いドレイン-ソース間電圧V_{DS}に曝されると、トランジスタのオン抵抗が増加する状態です。この状態をテストする従来の方法は、最大定格温度(通常150°C)で最大定格の直流電圧V_{DS}を印加することです。一定時間(通常は1000時間)経過しても故障がない場合、製品は合格であると見なされます。

フェーズ14のレポートに示されているように、オン抵抗R_{DS(on)}を増加させ る支配的なメカニズムは、チャネル近くでトラップ状態にある電子のトラ ップです。トラップされた電荷が蓄積されると、オン状態の2次元電子ガス (2DEG)から電子が枯渇し、R_{DS(on}が増加することになります。

図3は、eGaNトランジスタのEPC2016Cの拡大画像で、1~2 µmの光学範囲 での熱放射を示しています。この部分のスペクトル放射は、ホット・エレクト ロンと一致しており、デバイス内のそれらの位置は、デバイスがドレイン-ソ ース間バイアス下にあるときの最も高い電界の位置と一致しています。

図3:ホット・エレクトロンと一致する1~2μmの波長範囲(SWIR:短波長赤 外線)での発光を示す EPC2016C (eGaN FET)の拡大画像。SWIR発光(赤 色-オレンジ色)は、通常の(可視波長)顕微鏡画像に重ね合わされています

デバイスのこの領域のホット・エレクトロンがトラップされた電子の源で あることを知っているので、動的オン抵抗を最小化する方法のより深い理 解は、設計とプロセスを改善することから得られます。ホット・エレクトロ ンの一般的な振る舞いを理解することによって、より広い範囲のストレス 条件にわたって、それらの振る舞いを一般化することができます。

図4は、第5世代GaNトランジスタ EPC2045 [5]のオン抵抗R_{DS(on})が、さま ざまな電圧ストレスのレベルと温度で、時間と共に大きくなり、ホット・エ レクトロンのトラップがドレイン付近のピーク電界で加速されるという知 識に基づいて設計されていることを示しています。上のグラフのデバイス は、25℃、電圧60 V~120 Vでテストされています(EPC2045のV_{DS(max})は 100 V)。横軸は、時間を分単位で表しており、右端は10年です。下のグラ フは、さまざまな温度で120 Vのバイアスを加えたときのR_{DS(on})の変化を 示しています。直観に反する結果は、温度が低いほどオン抵抗が速く増加 することです。これは、ホット・キャリア注入と一致します。これは、特定の 電界によって、より大きな運動エネルギーに加速されるため、ホット・エレ クトロンが低温での散乱イベントの間でさらに移動するためです。この結

図4: さまざまな電圧ストレスのレベルと温度での第5世代eGaN FET (EPC2045)の経時的な $R_{DS(on)}$ 。上のグラフでは、デバイスは、25°C、電圧 60 V~120 Vでテストされました。下のグラフは、さまざまな温度での120 Vで $OR_{DS(on)}$ の変化です。

果、電子はトラップされやすい別の層に到達することができます。デバイス が最大の電圧と温度でテストされる従来のテスト方法では、デバイスの信 頼性を判断するには不十分である可能性があることを示唆しています。

HTRB (高温逆バイアス)の結果の最初の出版物 [2,6] では、平均故障時間MTTFは35℃や150℃と比べて90℃で最高になることが見つかりましたが、これは、当時は謎でした。今、この結果が、うまく理解できるようになりました。このデバイスが直流バイアス下で加熱されると、漏れ電流が増加します。ただし、ホット・キャリアの平均自由行程が短いため、利用可能な電子の増加が相殺され、時間の経過と共に、室温から90℃まで R_{DS(on)}が上昇しますが、その後は、より高い温度で減少し始めます――これも直感に反する結果です。これらの結果の最初の発表は、多くの疑問や懐疑論と共に、GaNコミュニティの大きな関心事となりました。

フェーズ15テスト

2.1 物理ベースの動的R_{DS(ON)}と寿命モデル

EPCは、表面トラップへのホット・キャリア散乱の基本的な物理か ら、GaNトランジスタの動的R_{DS(on})効果を説明するための第一原理数学 モデルをフェーズ14の信頼性レポートで報告しました。このモデルは、次 のすべての現象をうまく予測します:

- ・R_{DS(on)}は、時間と共に増加します
- ・時間経過に伴うR_{DS(on)}の傾きは、負の温度係数を持ちます(つまり、高 温での傾きが小さくなります)
- スイッチング周波数は傾きに影響を与えませんが、垂直方向のオフセッ トが小さくなります
- スイッチング電流は傾きに影響を与えません
- ・誘導性ハードスイッチングと抵抗性ハードスイッチングの違いは無視で きるほど小さい

時間、温度、ドレイン電圧の関数としてのR_{DS(on)}増加の最終的な数学的 モデルが式2です。

$$\frac{\Delta R}{R} = a + b \log\left(1 + \exp\left(\frac{V_{DS} - V_{FD}}{\alpha}\right)\right) \sqrt{T} \exp\left(\frac{\hbar\omega_{LO}}{kT}\right) \log(t) \qquad \overline{z} \downarrow 2$$

独立変数:

V_{DS}= ドレイン電圧(V) デバイス温度(K)

- T =
- 時間(分) t =

パラメータ:

- 0.00(単位なし) a =
- 2.0E-5 (K^{-1/2}) b =
- $\hbar\omega_{L0} = 92 \text{ meV}$
- V_{FD} = 100 V (第5世代の100 V製品にのみ適当)

10 (V) a =

ボルツマン定数=0.0862 meV/K k =

多くのユーザーは、特定の品質または信頼性の要件を満た すために、特定の使用条件下での寿命の見積もりが必要で す。R_{DS(on)}が初期値から20%上昇する時間を<t>として(ハー ドスイッチング条件下での)寿命を定義することによって、簡 単な方法で反転して次の式3が得られます:

$$\langle t \rangle = \exp\left[\frac{(0.2-a)}{b \log\left(1 + \exp\left(\frac{V_{DS} - V_{FD}}{a}\right)\right) \sqrt{T} \exp\left(\frac{\hbar \omega_{LO}}{kT}\right)}\right] (\mathcal{D}) \qquad \text{its}$$

この式は、動作電圧と温度の関数として、ハードスイッチング条件下で 予想されるMTTFを与えます。通常、最悪の場合の値(最高電圧、最低 温度)が下限を提供するために使われます。これまでと同様に、寿命の 単位は分です。寿命の他の定義を適用して、式3から抽出することもでき ます。

2.2 スイッチング周波数とスイッチング電流の影響

これまでの分析では、R_{DS(on)}増加特性に対するスイッチング周波数(f)と スイッチ電流())の影響は無視してきました。この電流は、ハードスイッチ ング遷移中に高電界領域に注入される電子の数に直接影響を与えるため、 ホット・キャリア密度に線形の影響を及ぼします。同様に、スイッチング周 波数は、所定の時間間隔においてドレインで見られるホット・キャリア・パ ルスの数を決定するため、表面トラップ率にも線形の影響を及ぼします。

表面トラップ率が周波数(f)と電流(l)の両方に線形に比例すると仮定 すると、fとIの影響が式4に含まれています。ここで、1つのスイッチング 条件 (f₁,I₁) から別の (f₂,I₂) へのR_{DS(on)}の増加に関連する簡単なスケー リング項が導かれます。

$$R(t; f_2, I_2) = R(t; f_1, I_1) + b\left(\log\left(\frac{f_2}{f_1}\right) + \log\left(\frac{I_2}{I_1}\right)\right) \qquad \qquad \vec{x} \mathcal{A}$$

数学的には、スイッチング周波数や電流を変える影響は、単にR_{DS(on)}の 増加曲線が垂直方向にわずかにオフセットするだけです。このオフセッ トはfとlの対数に依存するため、これらの変数への依存性は基本的に弱 くなります。さらに、このオフセットはlog(t)増加特性の全体的な傾きb に依存します。したがって、FETがR_{DS(on)}の上昇が小さい(傾きbが小さ い) 条件下で動作している場合、周波数や電流を変えた影響は無視で きます。

図5:2桁にわたる3つの異なるスイッチング周波数での正規化したRDS(on) と時間の関係。周波数変化の影響は、増加特性の小さな垂直オフセット であることに注意してください。同じオフセットが異なるスイッチ電流で 発生します。

図5は、10 kHzから1 MHzまでの3つの異なるスイッチング周波数での EPC2045の正規化したR_{DS(on)}と時間の関係です。このグラフは単に、垂 直方向に互いにオフセットされていることに注意してください。異なるス イッチ電流を比較した場合も同じです。オフセットはf(またはl)の対数 として変化するため、スイッチング周波数(または電流)の10倍の増加 でさえ、測定と予測で土10%の雑音が発生するため、実験的に観測する ことは困難です。

6

フェー<u>ズ15テスト</u>

2.3 より高いストレス電圧の影響

トラップした電荷の量が2DEGで利用可能な電子の数に近づく場合(表面トラップ電荷Q_Sは、内蔵の2DEGの圧電電荷Q_Pに近づく場合)、式2で使われた単純化のための仮定は、もはや無効になります。この状況は、 デバイスが設計限界をはるかに超える電圧になっている場合に発生する可能性があります。図6に、75℃と125℃において、最大150 Vでテストした EPC2045 の結果を示します。単純なlog(時間)依存で発生する直線 外挿が適用できなくなったことに注意してください。Q_Pの非常に小さい一部がトラップされたという単純化のための仮定をしないと、Q_Sとなり、式 5に示すように、次の結果が得られます。拡張されたパラメータのリストを 使って式5を計算すると、図6の実線が得られ、この物理ベースのモデルの有効性と適用可能性のさらなる証拠が得られます。

$$\frac{\Delta R}{R} = a_1 \left[\frac{a_2 \Psi \log \left(1 + a_3 t / \Psi \right)}{1 - a_2 \Psi \log \left(1 + a_3 t / \Psi \right)} \right]$$

ここで:

$$\Psi \equiv \frac{qF\lambda}{\beta} \quad a_1 \equiv \frac{C}{Q_p} \qquad a_2 \equiv \frac{1}{Q_p} \qquad a_3 \equiv B \qquad \overline{x}_{0,5}^{+}$$

次の拡張されたパラメータのリストを使います:

- a₁ = 0.6 (単位なし)
- a₂ = b/a₁ ([7] からb = 2.0E-5 K^{-1/2})
- a₃ = 1000 (K^{1/2}分⁻¹)
- $b = 2.0E-5 (K^{-1/2})$
- $\hbar\omega_{L0} = 92 \text{ meV}$
- V_{ED} = 100 V (第5世代の100 V製品のみに該当)
- $\alpha = 10 (V)$
- T = デバイス温度(K)
- t= 時間(分)

2.3.1 200 Vのモデル

同様の分析を200 VのGaNトランジスタについても展開しました。 この結果の変数は次のとおりです:

a₁= 0.6 (単位なし)

- a₂= 2.8・b/a₁([7] からb = 2.0E-5 K^{-1/2})
- *a*₃= 1000 (K^{1/2}分⁻¹)
- $b = 2.0E-5 (K^{-1/2})$
- $\hbar\omega_{L0} = 92 \text{ meV}$

V_{FD}= 100 V (EPC2045、EPC2204、EPC2218、EPC2071、 EPC2302などの第5世代の100 V製品に該当)

- α= 25(V)(第5世代の200 Vの製品のみに該当)
- T= デバイス温度(K)
- t= 時間(分)

図7は、200 Vのデバイスの変数を使った式2の結果です。これらの計算結 果を、実際の測定値と比較しました。左側は、3種の電圧に対する第5世代 の定格200 VのEPC2215 の正規化したR_{DS(on)}です。最高電圧の280 Vは、 最大定格を40%上回ります。右側は、2種の異なる温度、および最大定格 電圧でのモデルと比較した測定値です。

図6:設計定格の150%までのさまざまな電圧(上図)と、同じく設計定格の 150%の2種類の異なる温度(下図)でのハードスイッチング回路の100 Vの EPC2045 デバイス。実線はモデルの予測値、点は測定点を表します。

図7: (上図)3種の電圧での200 VのEPC2215の正規化したR_{DS(on)}。280 Vは 最大定格電圧よりも40%高いことに注意してください。75℃と125℃の200 V における EPC2215(下図)。実線は200 Vデバイスの変数を使った式20の結 果であり、点は実際の測定値です。

7

フェーズ15テスト

2.4 物理ベースの動的R_{DS(ON)}モデルの結論

EPCは、ハードスイッチング条件下でのGaNトランジスタのR_{DS(on)}の増加を説明するために、物理ベースの第一原理モデルを開発しました。このモデルは、ホット・エレクトロンが表面電位を越えて表面誘電体の伝導帯に注入されるという仮定に基づいて予測されています。この中に入ると、電子はすぐに、深い中間ギャップ状態に陥り、永久にトラップされていると見なされます(トラップ解除なし)。ホット・エレクトロンは、スイッチング遷移中に生成されます。ここでは、高注入電流と高電界の過渡的な組み合わせによって、高エネルギー領域への長い末端を持つホット・キャリアのエネルギー分布が発生します。

このモデルによって、以下の結果が予測されます:

- R_{DS(on)}は、時間と共に増加します。
- ・時間経過にわたるR_{DS(on)}の傾きは、負の温度係数を持ちます (つまり、温度が上昇するにつれて、傾きが小さくなります)。
- スイッチング周波数は傾きに影響を与えませんが、垂直方向のオフセットが小さくなります。
- ・スイッチング電流は傾きに影響を与えません。

この時間依存は、2つの絡み合った効果を伴う急速な自己消光電 荷トラップの力学に起因します:(1)エネルギーが指数関数的な ホット・エレクトロンのエネルギー分布;および(2)誘電体への 電子注入の障壁を着実に高くする蓄積表面電荷Q_Sです。これら の効果の組み合わせは、電荷が蓄積するにつれて、トラップ速度 が指数関数的に遅くなることにつながります。トラップされた電 荷の数が2DEGで利用可能な電子の数に近づくと、R_{DS(on)}は、直 線的にlog(時間)依存よりも速く上昇するようになります。ただ し、このトラップ・メカニズムは、真のlog(時間)依存性に従って 続きます。

負の温度依存性は、ホット・キャリアのエネルギー分布に対する LO-フォノン散乱の影響の結果です。低温では、散乱が減少すると 平均自由行程が改善され、電子が電界内で、より高いエネルギー を獲得できるようになります。

数学モデルの主要なパラメータは、ドレイン電圧と温度の範囲 にわたる EPC2045の測定結果と適合しました。このモデルによ って、ユーザーは、ドレイン電圧、温度、スイッチング周波数、ス イッチング電流の4つの主要な入力変数の関数として、長期的な R_{DS(on)}の増加を予測できます。このモデルは、ユーザーが任意の 条件下での寿命を予測できるように、単純なMTTF方程式を提供 するように適応されています。

セクション3:安全動作領域

安全動作領域 (SOA) テストは、GaNトランジスタを指定されたパ ルスの長さで大電流 (I_D) と高電圧 (V_{DS}) に同時に曝します。主な 目的は、データシートのSOAグラフ内のすべての点 (I_D, V_{DS}) でト ランジスタが不具合なく動作できることを確認することです。安 全領域の外側で故障するまでテストすることによって、安全マージ ンを調査するためにも使えます。SOAテスト中、チップ内の大きな 電力消費によって、接合部温度が急激に上昇し、温度の傾きが大 きくなります。電力またはパルス持続時間が十分に大きい場合、 デバイスは、単純に過熱して壊滅的に故障します。これは、熱過負 荷故障として知られています。 SiMOSFETでは、SOAテストで2次降伏 (またはSpirito効果[2]) と して知られる別の故障メカニズムが観測されています。高V_Dおよ び低I_Dで発生するこの故障モードは、接合部温度としきい値V_{TH} の間の不安定なフィードバックによって引き起こされます。パルス 期間中に接合部温度が上昇すると、V_{TH}が低下し、パルス電流が 大きくなる可能性があります。電流が大きくなると、温度がより速 く上昇し、正のフィードバック・ループが形成され、熱暴走と最終 的な故障につながります。この調査の目的は、Spirito効果がGaN トランジスタに存在するかどうかを判断することです。

直流または長期間パルスの場合、トランジスタのSOA能力は、デバイス の放熱に大きく依存します。これは、真のSOA能力を評価するための 大きな技術的課題となる可能性があり、多くの場合、特殊な水冷ヒー トシンクが必要になります。ただし、パルスが短いと(1 ms以下)、放 熱はSOA特性に影響しません。短い時間では、接合部で発生する熱 が外部の任意のヒートシンクに拡散するための十分な時間がないため です。代わりに、すべての電力は、GaN膜と、近くのシリコン基板の温度 (熱容量)を高くすることに変換されます。このため、SOAテストは、2 つのパルス幅、すなわち、1 msと100 μsで実施しました。

図8: EPC2034CのSOAプロット。「 $R_{DS(on)}$ による制限」の線 は、150°Cでの $R_{DS(on)}$ のデータシートの最大仕様に基づいていま す。1 ms (紫色の三角形) と100 μ s (緑色の点)のパルスの測定値 を一緒に示しています。故障は、赤色の三角形 (1 ms) または赤色 の点 (100 μ s) で示します。すべての故障は、データシートのSOA 領域の外側で発生することに注意してください。

図8は、200 Vの EPC2034 CのSOAデータです。このプロットでは、個々のパルス・テストは、(I_D、V_{DS})空間の点で表されています。これらの点は、データシートのSOAグラフに重ね合わされています。100 µsと1 msの両方のパルス・データを一緒に示しました。緑色の点は、部品が合格した100 µsのパルスに対応し、赤色の点は部品が故障した場所を示します。低V_{DS}からV_{DSmax} (200 V)までの範囲すべてで、SOAの広い領域が故障なしという調査結果でした(すべて緑色の点)。すべての故障(赤色の点)はSOAの外側で発生し、データシートのグラフの緑色の線で示されています。同じことが1 msのパルス・データ(紫色と赤色の三角形)にも当てはまります;つまり、すべての故障は、データシートのSOAの外側で発生しました。

フェーズ15テスト

図9は、車載品質AEC認定の EPC2212 (第4 世代の車載用100 V)、EPC2045 (第5世代の 100 V)、および EPC2014C (第4世代の40 V) の追加した3種の部品のSOAデータです。す べての場合において、データシートの安全動 作領域は、故障なしで調査されており、すべ ての故障はSOA制限の外、多くの場合、この 制限よりもかなり外側で発生しています。

データシートのSOAグラフは、関連するすべ ての層を含むデバイスの熱モデルと、その熱 伝導率および熱容量を使って、有限要素解 析で生成されます。 過渡シミュレーションに 基づいて、SOAの制限は、単純な基準によっ て決定されます:すなわち、与えられたパル ス持続時間に対して、消費電力は、パルスの 終了前に接合部温度が150℃を超えないよ うにしなければなりません。この基準によっ て、SOAグラフの45度の緑色の線 (100 μs) と紫色の線(1ms)で示される一定の電力 に基づく制限になります。このアプローチの 結果は、この調査の広範なテスト・データに よって証明されるように、保守的な安全動作 領域を定義するデータシートのグラフにな ります。パワーMOSFETでは、同じ定電力ア プローチによって、熱的不安定性(Spirito効 果)が原因で故障が早期に発生する高電圧 領域での能力の過大評価につながります。

故障の正確な物理は、まだ決められません が、この調査の主な結果は明らかです ―― GaNトランジスタはデータシートのSOA内 で動作すれば故障しません。

セクション4:短絡の耐久性テスト

短絡の耐久性とは、オン(導通)状態のときに、パワー・コンバータ で発生する可能性のある意図しない故障状態に耐える FET の能力 のことです。このような事象の場合、そのデバイスには、トランジスタ の固有の飽和電流と、故障の場所とアプリケーションによって変わ る回路の寄生抵抗によってのみ制限される電流と全バス電圧の組み 合わせが加わります。短絡状態が保護回路によって抑制されない場 合、極端な電力消費は最終的にトランジスタの熱故障につながりま す。短絡テストの目的は、これらの条件下で部品が生き残ることがで きる「耐性時間(耐えられる時間)」を定量化することです。

ー般的な保護回路 (IGBTゲート・ドライバの不飽和保護など) は2 ~3 μsの過電流状態を検出して対応することができます。したがっ て、GaNトランジスタが約5 μs以上のクランプされていない短絡状態 になったとしても、耐えることができることが望ましいと言えます。

短絡の耐久性の評価に使われる2つの主なテスト回路は以下です [8]:

- ハードスイッチ故障 (HSF: Hard-switched fault):ドレイン電圧が 印加された状態でゲートがオン (およびオフ) に切り替えられます
- 負荷時故障 (FUL: Fault under load):ゲートがオンのときにドレイン電圧がオンに切り替えられます

図9: EPC2045 (左上)、EPC2212 (右上)、EPC2014C (下)のSOAプロット。 $[R_{DS(on)}$ による 制限」の線は、150°Cでの $R_{DS(on)}$ のデータシートの最大仕様に基づいています。1 ms (紫色の 三角形)と100 μ s (緑色の点)のパルスの測定値が一緒に示されています。故障は、赤色の三 角形 (1 ms)または赤色の点 (100 μ s)です。すべての故障は、データシートのSOA領域の外で 発生することに注意してください。

> この調査では、両方の故障モードでデバイスをテストし、耐性時間に 有意差は見られませんでした。したがって、この説明の残りの部分で は、FULの結果に焦点を当てることにしました。ただし、HSF テスト から、GaNトランジスタは、シリコン・ベースの IGBT で発生する可能 性のあるラッチやゲート制御の損失がなかったことに注意すること が重要です [9]。GaNデバイスに寄生のバイポーラ構造がないことか ら、これは予想された結果です。このトランジスタが壊滅的に故障す る時間まで、ゲートをローに切り替えることで短絡を完全に抑えるこ とができます。これは、保護回路設計にとって有利な機能です。

- 2種類の代表的なGaNトランジスタをテストしました:
- 1) EPC2203 (80 V):第4世代の車載品質 (AEC) のデバイス
- 2) EPC2051 (100 V): 第5世代のデバイス

これらのデバイスは、製品ファミリーの中で最も小さいので、選びま した。短絡評価に必要な大電流にして、テストを簡素化しました。た だし、単純な熱スケーリングの議論に基づいて、耐性時間は、他のフ ァミリー内のデバイスと同じであると予想されます。このEPC2203の 結果は、EPC2202、EPC2206、EPC2201、EPC2212にも対応しま す;EPC2051は EPC2045 と EPC2053にも当てはまります。

フェーズ15テスト

図10は、増加する一連のドレイン電圧に対する EPC2203 の負荷時 の故障データです。6V(データシート最大値)のV_{GS}、および10 µs のドレイン・パルスにおいて、このデバイスは、60 VのV_{DS}まで、まっ たく故障しませんでした。これらの条件下では、1.5 kW以上が面積 0.9 mm×0.9 mmのチップで消費されます。より高いV_{DS}では、電流は パルス中に時間と共に減衰するように見えます。これは、デバイス内 の接合部温度の上昇の結果であり、永久的な劣化を意味するもので はありません。

図10:増加する一連のドレイン電圧における EPC2203 の負荷時故障 テスト (FUL)の波形。ドレイン・パルスは、幅10 µsでV_{GS}=6 Vです。 このデバイスは、このパルス幅に対して、故障しませんでした。(上の 図) V_{DS}対時間。V_{DS}は、デバイスの端子で直接、ケルビン検出しまし た。(中央の図) I_{DS}対時間。I_{DS}は、自己発熱によって、時間の経過と 共に減少することに注意してください。(下の図)このテスト・シーケ ンスの結果の出力曲線。ドレイン電流は、パルス期間中の平均電流 として報告されます。より高いV_{DS}でのデバイスの加熱によって、ドレ イン電流は飽和領域で反転します。 より長いパルス幅 (25 µs) を使うと、その部品は、最終的に熱過負荷で故障します。代表的な波形が図11 です。故障時は、ドレイン電流の急峻な上昇によって示されます。この事象の後、デバイスは永久に損傷します。この耐性時間は、パルスの開始から故障するまでの時間で測定されます。

図11: $V_{DS} = 60 V$ 、 $V_{GS} = 6 V$ 、ドレイン・パルス幅25 μ sで の EPC2203 (上図) とEPC2051 (下図) の標準的な負荷時故障テス トの波形。ドレイン電流の急峻な上昇は、壊滅的な熱故障のときの 時間を示しています。

耐性時間に関する統計を収集するために、このアプローチを使っ て、8個の部品の群を故障するまでテストしました。この結果が表2で す。EPC2203 は、5 V (推奨ゲート駆動電圧)と6 V (V_{GS(max}))の両方 でテストし、平均耐性時間は、それぞれ20 µsと13 µsでした。飽和電 流が高いため、6 Vでの寿命が短いことに注意してください。EPC2051 は、6 Vでの EPC2203と比べて、故障するまでの時間がわずかに短く なっています (9.3 µs)。これは、第5世代の製品におけるより積極的な スケーリングと電流密度のために、予想通りです。ただし、すべての場 合において、この耐性時間は、ほとんどの短絡保護回路が応答して、 デバイスの故障を防ぐために十分な長さです。さらに、この耐性時間 は、部品間のばらつきが小さいことを示しています。

フェーズ15テスト

表2の下の行は、チップ面積に対するパルスの電力とエネルギー を示しています。これらの量と故障するまでの時間との関係を理 解するために、時間依存の熱伝導をシミュレーションし、短絡パ ルス期間中の接合部温度の上昇ΔT」を決定しました。この結果が 図12です。

短絡パルス	EPC2203	3 (Gen 4)	EPC205	1 (Gen 5)
$V_{\rm DS}=60\rm V$	$V_{GS} = 6 V$	$V_{GS} = 5 V$	$V_{GS} = 6 V$	$V_{GS} = 5 V$
平均TTF(µs)	13.1	20.0	9.33	21.87
標準偏差(µs)	0.78	0.37	0.21	2.95
最小TTF(μs)	12.1	19.6	9.08	18.53
平均パルス電力(kW)	1.764	1.4	3.03	2.03
エネルギー (mJ)	23.83	27.6	27.71	42.49
チップ面積 (mm²)	0.9	025	1.105	
平均電力/面積(kW/mm ²)	1.95	1.55	2.74	1.84
エネルギー/面積(mJ/mm²)	26.4	30.59	25.08	38.46

表2:EPC2203 および EPC2051 の短絡耐性時間の統計

注:各条件の8個のデバイスから得られた統計。耐性時間は、平均値の 周りに密に分布しています。平均パルス電力とエネルギーは、母集団内 の標準的な部品に対応します。

図12:5 Vと6 VのV_{GS}での EPC2051 と EPC2203 の両方に対す る短絡パルス中の時間に対するシミュレーションした接合部温 度の上昇。測定された故障時間は赤色のマーカーで示していま す。EPC2203 は、約475 °Cの Δ T」で壊滅的に故障することに対 し、EPC2051 は約575 °Cで故障することに注意してください。シミュ レーションした Δ T」は、方程式に示されているように、時間に対する 単純な平方根依存性(熱拡散)によく適合します。Pは単位面積当た りの平均電力を示し、k=6.73×10⁻⁵ K m²/W s^{1/2}です。

パルス期間中の非常に高い電力密度によって、GaN層と、その近 くのシリコン基板が急速に加熱されます。パルスが短く、熱伝導 が比較的遅いため、半導体の厚さが薄いこと(深さ約100 μm以 下)だけが、エネルギーを吸収する助けになります。この温度は、 時間の平方根(熱拡散の特性)で上昇し、パルス電力に線形に 比例します。図 12 に示されているように、EPC2203 の場合、5 V と6 Vの両方の条件において、接合部温度の上昇が同じ約 475℃ で故障します。同じことが EPC2051 にも当てはまり、両方の条 件で、約 575℃の同じΔT」で故障します。これらの結果から、3 つ の重要な結論が導き出されます:

- これらのデバイスの場合、故障するまでの時間は、消費電力の2乗に反比例します(P⁻²)。これは、持続時間が約1 ms以下の短絡パルスおよびSOAパルスに適用されます。
- 2) 大電力パルスに起因する固有の故障モードは、ある臨界値を 超える接合部温度に直接関連しています。
- 3) ワイド・バンドギャップeGaNデバイスは、シリコン・デバイス が、フリー・キャリアの熱暴走のために完全に対応できない 接合部温度 (400℃以上) に耐えることができます。

デバイスがこれらの極端な条件に繰り返し耐えられるかどうかを 確認するために、データシートに記載されているパルス電流の最 大定格の約2倍のデバイス電流を発生させる短絡条件下で、いく つかの部品に50万周期以上を加えました。このテストの設定で は、直流5Vまたは6Vのゲート・バイアスをテスト対象デバイス (DUT)のゲートに印加しました。ドレイン・バイアスは直流10V に設定し、60 mFのコンデンサをドレイン電源の両端に接続しま した。DUTと直列の低R_{DS(on)}のハイサイド・トランジスタが、電流 の無制限の流れを制御しました。次に、制御トランジスタに1 Hzで 5 μsのパルスを加えて、チャネルが再び平衡するまでの時間を与え ました。表3は、テストされたさまざまなタイプのデバイス、データ シートのパルス電流の最大定格、テスト開始時の各周期中にデバイ スを介してパルス化された短絡電流の量を示しています。

デバイス	種類	データシー トのパルス 電流 (A)	V _{GS}	平均値 (A)	標準偏差 (A)
EDC0002	80 V AEC	17	5	35	2.4
Gen4		17	6	43	2.5
EPC2212 100 V AEC Gen4	100 V AEC	75	5	124	2.1
	Gen4	75	6	160	3.5
EDC0051	100 V	27	5	68	1.0
EPC2051	Gen5	5/	6	87	1.3
EDCODEO	100 V	74	5	147	1.6
EPC2052	Gen5	/4	6	163	2.2
EPC2207	200 V	E A	5	99	4.7
	Gen5	54	6	132	5.0

表3:極端なパルス短絡電流、通常はデータシートの最大制限の2倍で テストされたデバイス

表4は、EPC2051の主なデバイス・パラメータです。これは、表3と 図12で使われているものと同じ型番のデバイスです。データシート の最大定格の2倍を超える85Aの50万パルスという極端な条件下 でさえも、すべての電気的特性がデータシートの仕様の範囲内に収 まっています。ただし、V_{TH}のわずかな増加に従って、時間の経過と 共にDUTによって「消費」される短絡電流の量がわずかに減少しま した。この50万パルスのシーケンスの後、この部品は175℃で、バ イアスなしで10分間、アニールしました。表4の右側の列に示され ているように、電気的パラメータと短絡電流は、繰り返しパルスのス トレスを受ける前のそれらの値の近くまで回復しました。この回復 は、大電流パルスの繰り返しによる恒久的な損傷が発生しなかった ことを示しています。

EPC2051	t = 0	10 万パルス	50 万パ ルス	175°Cで10分間のア ニール後
V _{TH} (V)	1.8	2	2.1	1.8
I _{GSS} (μA)	11	33	55	23
I _{DSS} (μΑ)	7	5.5	5.1	5.6
R _{DS(on)} (mΩ)	22	22.3	22.3	22
Ishort circuit	84	77	74	82

表4:パルス・テストの開始時、10 万パルス後、50 万パルス後、および 175℃ で10 分間のアニールの後の EPC2051 の主なデバイス・パラメー タ。デバイス・パラメータは常に、データシートの制限内に収まりました。

セクション5:機械的応力

製品の最終的な寿命、または、特定のアプリケーションでのその 適合性は、遭遇する機械的応力によって制限される場合がありま す。このセクションでは、最も一般的な機械的応力源であるチッ プのせん断、背面圧力、曲げ力を特徴づけ、ウエハー・レベルのチ ップスケール・パッケージ(WLSCP)が、通常の組み立て、または 取り付け条件下において、耐久性があることを実証します。

5.1 チップのせん断テスト

チップせん断テストの目的は、eGaNデバイスをプリント回路基板 に実装するために使われるはんだ接合の耐性を評価することで す。この判断は、チップがプリント回路基板から受けるせん断の 面内力を実装したデバイスに加えたときに基づいています。すべ てのテストは、軍用テスト規格MIL-STD-883E、Method 2019 [12] に準拠しています。

図13に、選択した4種のGaNトランジスタのテスト結果を示しま す。各製品について10個の部品をテストしました。テストした最 小のチップは、EPC2036/EPC2203で、チップ面積が0.81 mm² で、直径 200 µm のはんだボールは、わずか4個です。予想通 り、この製品のせん断強度は、最小でしたが、図13に示すよう に、MIL規格で指定された最小の力の要件を超えています。テス トした最大のチップは EPC2206 で、チップ面積13.94 mm²のラ ンド・グリッド・アレイ (LGA) の製品です。EPC2206 は、最小の 力の要件の10倍以上になっています。サイズの分散内の EPC2212 (100 V、LGA) とEPC2034C (200 V、BGA) の2つの製品を追加 でテストしました。いずれの製品も、最小の力を大幅に上回りま した。 図13の結果は、ウエハー・レベルのチップスケール・パッケージの GaN製品がすべて、最も厳しい条件下で、環境せん断力に対して 機械的に丈夫であることを示しています。

図13: せん断強度を測定すると同時に、GaNトランジスタのさま ざまなチップ・サイズとはんだ構成で、故障するまでテストしまし た。この結果は黒色の点で示しています。赤色の点は、MIL-STD-883E、Method 2019の下での推奨される最小のチップせん断強度 です。

5.2 裏面圧力テスト

GaNデバイスの機械的丈夫さのもう1つの重要な側面は、裏面圧 力をどれだけうまく処理できるかです。これは、チップの裏面の放 熱が必要なアプリケーションにとって重要な考慮事項です。組み 立て中に、安全な「ピック・アンド・プレース」配置の力を決めるた めにも重要です。

最大400 psiの裏面圧カテストを実施しました。この圧力は、加え られた力をチップ面積で割って計算します。図44は、使用した実 験室用圧カテスターです。負荷速度を0.6 mm/分にして、チップ の裏側に直接圧力を加えました。この圧力テストの前後に、合格 または不合格を判断するためにパラメータ・テストを実施しまし た。続いて、部品を60 V_{DS}、85°C、相対湿度85%で300時間の高 温高湿逆バイアス (H3TRB)・テストに曝しました。H3TRBは、 圧力テストによる機械的損傷 (内部亀裂)によって引き起こされ た潜在的な故障があったかどうかを判断するときに有効です。

EPC2212 (100V、LGA) とEPC2034C (200V、BGA) をテストし、 両方とも400 psiに合格しました。このデータは表5に含まれてい ます。これらの結果は、eGaN FETには、プリント回路基板の組み 立て工場で通常使われる裏面圧力を処理するための十分なマー ジンがあることを示しています。これらの部品は400 psiに耐えま したが、EPCは、最大裏面圧力を50 psi以下に制限することを推 奨しています。

製品	サンプ ル・サ イズ	チップ面 積	裏面圧 力	印加し た力	圧力テスト 後のパラメ ータ・テス トにおける 故障	300時 間の H3TRB テスト後 の故障
EPC2212 (LGA)	16	2.1 x 1.6 mm	400 psi	9.3 N (2.1 ポン ド)	0/16	0/16
EPC2034C (BGA)	16	4.6 x 2.6 mm	400 psi	33.0 N (7.4 ポンド)	0/16	0/16

表5:eGaNデバイスの圧力テストの結果

注:小型および比較的大型の eGaN デバイスは、高い裏面圧力下でテス トされ、機械的故障はありませんでした。温度、湿度、バイアスの下でのス トレス・テスト後の故障はありませんでした。

5.3 曲げカテスト

曲げカテストの目的は、取り扱い、組み立て、または操作中に発 生する可能性のあるプリント回路基板のたわみに耐える GaNト ランジスタの能力を判断することです。このテスト規格は、表面 実装の受動部品 (AEC-Q200) [13] 向けに開発されましたが、多 くのユーザーは、2 つの主な理由から GaN トランジスタの曲げ 力に関心を持っています:

1. ウエハー・レベルのチップスケール・パッケージ (WLCSP) のは んだ接合の耐久性;

2. デバイスのパラメータ値を変え、望ましくない回路動作にさせ る可能性のあるトランジスタ内の圧電効果です。

これらの関心に対応するために、AEC-Q200-005Aテスト規格 [14] に従って、4 個の EPC2206 で曲げ力テストを実施しました。デバ イスは、FR4 プリント回路基板 (長さ100 mm×幅40 mm×厚さ 1.6 mm)の中央付近に実装されています。両端がしっかりと固 定されている状態で、デバイスの反対側に圧力が加えられてい るので、プリント回路基板が上向きにたわみます。この屈曲状態 で 60 秒間保持した後、すべてのデバイスの電気的パラメータを測 定します。

表 6 は、テスト対象の 4 個のデバイスすべての正規化した R_{DS(on)}と基板のたわみの関係を示しています。すべてのデバイス が 2 mmのテスト条件に合格しました。2 個のデバイスは 6 mm のたわみで故障しましたが、残りの 2 個は 8 mmまで生き残りま した。事後分析によって、故障モードは、はんだ接合部の亀裂で あり、ゲート接続がオープンになりました。故障するまで加えて も、R_{DS(on)}は基板のたわみに対して、感知できるほどの反応を示 しませんでした。同じことが、しきい電圧 V_{TH}や漏れ電流 I_{DSS}の ような他の電気的特性でも観察されました。

	0 mm	2 mm	4 mm	6 mm	8 mm
DUT1	1.00	1.01	1.00	0.98	0.98
DUT2	1.00	1.02	1.01	故障	-
DUT3	1.00	1.01	1.03	故障	-
DUT4	1.00	0.99	0.99	1.03	1.04

表6:曲げカテスト中の4個のデバイスの正規化したR_{DS(on)}と基板のたわみ

注:値は、屈曲していない場合のR_{DS(on})に正規化しています。4 個の デバイスのうち 2 個は、6 mmのたわみで故障しましたが、残りの 2 個のデバイスは 8 mm で生き残りました。どのデバイス・パラメータ でも、応力への大きな反応は見られませんでした。

セクション6:熱機械的応力

WLCSP 封止の GaNトランジスタは、AECまたはJEDECの規格に従って テストすると、優れた熱機械的信頼性を備えていることが分かります。 これは、「パッケージ」の本質的な単純さ、および、ワイヤー・ボンド、 異種材料、成形材料を使っていないことによるものです。まとめると、 すべての WLCSP の GaNトランジスタは、ベア・チップ形式で−40°C ~150°Cで利用できると言えます。

部品レベルの信頼性に加えて、IPC-9592のような業界固有の他の規 格や、プリント回路基板に実装された部品にシステムや基板レベルの テストを課す OEM (相手先ブランドによる生産) 環境要件があります。 これらの中には、GaNトランジスタなどの表面実装部品、特に部品と 基板の間のはんだ接合に深刻な熱機械的応力を誘発する組み合わせ が常に存在します。例えば、IPC-9592 規格の最も厳しい温度サイクル 要件 (クラスⅡ、カテゴリー2) では、サンプル数 30 ユニットで、ー40℃ ~125℃を 700 サイクル実施して、故障しないことが要求されます。は んだ装着の信頼性は、プリント回路基板のレイアウト、設計と材料、 アセンブリエ程、動作中の放熱ソリューション、アプリケーションの性 質など、デバイスによらないいくつかの要因に依存します。したがって、 特定のアプリケーションにおいて、故障するまでの時間を予測するた めの正確なモデルを提供することは、実現不可能で非現実的と言えま す。それにもかかわらず、過去に、EPCは、歪みエネルギー密度と疲労 寿命の相関関係に基づいて、はんだ接合の故障するまでの時間を予 測するモデルを公開しました [15]。

さまざまな条件下におけるより多くの温度サイクルと断続動作寿命 IOL (電力温度サイクルとも呼ばれます)の結果を示します。さらに、こ のセクションでは、アンダーフィル材を使って、はんだ接合の信頼性を 向上させる方法に関するデータと分析を提供します。アンダーフィルは 一般に、表面実装デバイスを最も過酷な環境条件に曝す可能性のある アプリケーションで使われます。

WLCSP 封止の GaNトランジスタの適切な動作を保証するために、ア ンダーフィルは必要ないことを強調することが重要です。実際、製品 の品質認定中に、ほとんどの信頼性テストを実施するために、被試験 デバイスは、アンダーフィルなしで FR4 基板に実装しています。このテ ストのリストには、HTRB (High Temperature Reverse Bias: 高温逆 バイアス)、HTGB (High Temperature Gate Bias: 高温ゲート・バイ アス)、H3TRB (High Temperature High Humidity Reverse Bias: 高温高湿逆バイアス)、uHAST (Unbiased highly accelerated test: バイアスなしの高加速試験)、MSL1 (Moisture Sensitivity Level 1 :耐湿性レベル1)、IOL(Intermittent Operating Life:断続 動作寿命)、HTOL(High Temperature Operating Life:高 温動作寿命)、ELFR(Early Life Failure Rate:初期寿命故障 率)、HTS(High Temperature Storage: 高温保存)、および、多くの 場合 TC(Temperature Cycling:温度サイクル) が含まれます。とは いえ、アンダーフィルは、チップとプリント回路基板の間の熱膨張係数 (CTE: coefficient of thermal expansion)の不一致に起因するはん だ接合への応力を軽減するため、基板レベルの信頼性を向上させるた めに使えるかもしれません。さらに、アンダーフィルは、厳しい沿面距離 とクリアランス要件がある場合に、汚染保護と、電気的絶縁の強化に貢 献します。最後に、アンダーフィルは、使われる材料の熱伝導率が空気 よりも大きいため、接合部から基板への熱インピーダンスの低減にも役 立ちますが、通常の熱伝導性材料TIM (thermal interface material) ほ どは、大きくはありません。アンダーフィル材料の選択を誤ると、はんだ 接合の信頼性も低下する可能性があることに注意してください。したが って、このセクションでは、シミュレーションと実験結果に基づいたガイ ドラインを提供します。

フェーズ15テスト

信頼性レポート

6.1 適切なアンダーフィルを選 択するための基準

アンダーフィル材の選択では、材料のいく つかの重要な特性と、チップとはんだの 相互接続も考慮しなければなりません。 まず第1に、アンダーフィル材のガラス転 移温度 Tg は、アプリケーションの最大動 作温度よりも高くなければなりません。次 に、アンダーフィルの CTE は、はんだ接合 の余分な引張/圧縮応力を回避するため に、両方が同じ速度で膨張/収縮しなけ ればならないため、はんだの CTE にでき るだけ近くなければなりません。参考まで に、一般的な鉛フリーSAC305 や Sn63/ Pb37 の CTE は約 23 ppm/℃です。ガラ

		CTE (ppm/C)			貯蔵弾性 率 (DMA)	粘度				
メーカー名	型番	Tg (TMA) [C]	Tg以 下	Tg以上	@ 25°C (N/mm ²)	@25°C	ホアソン比	体積抵抗率	熱伝導率	約4.100 約4.10
独ヘンケルの LOCTITE	ECCOBOND- UF 1173	160	26	103	6000	7.5 Pa*S				
ナミックス	U8437-2	137	32	100	8500	40 Pa*S	0.33	>1E15 Ω-cm	0.67 W/m∙K	
ナミックス	XS8410-406	138	19	70	13000	30 Pa*S				
米 MASTERBOND	EP3UF	70	25-30	75-120	3400	10-40 Pa*S	0.3	>1E14 Ω-cm	1.4 W/m∙K	450 V/ミル
米 AI TECHNOLOGY	MC7885-UF	236	20		7500	10 Pa*S		>1E14 Ω-cm	1 W/m∙K	750 V/ミル
AI TECHNOLOGY	MC7885-UFS	175	25		7500	10 Pa*S		>1E14 Ω-cm	2 W/m∙K	1000 V/ミル

表7:アンダーフィルの材料特性

ス転移温度Tgを超えて動作すると、CTE が劇的に大きくなることに注意してください。Tg と CTE に加えて、ヤング率も重要です。非常に硬いア ンダーフィルは、はんだバンプのせん断応力を減らすことに役立ちますが、このセクションの後半で示すように、デバイスの角の応力が増加しま す。低粘度 (チップの下のアンダーフィルの流れを改善するため)と高い熱伝導率も望ましい特性です。表7は、この調査でテストしたアンダーフ ィルの主な材料特性を比較しています。

6.2 温度サイクル下でのアンダーフィルの調査

このセクションでは、前述のリストのアンダーフィル材を使った場合と使わない場合の2つの異なる条件下でのさまざまな GaN トラン ジスタの温度サイクル (TC)の結果を示します。2つの温度サイクル範囲でテストしました:(i) -40°C~125°C;(ii) -55°C~150°Cで す。すべての場合において、部品は2層、厚さ1.6 mmのFR4 基板で構成される DUT のカードやクーポンに実装しました。はんだペー スト SAC305 と水溶性フラックスを使って、アンダーフィルの前にフラックス洗浄プロセスを実施しました。EPC2701C と EPC2053の 温度サイクル・データを表8~11 に示し、EPC2206の結果を図14のワイブル・プロットで示します。

製品/DOE						EPC2001C					
ストレス条件:-40℃ ~125℃	状態	300 サイクル	550 サイクル	850 サイクル	1000 サイクル	1250 サイクル	1550 サイクル	1750 サイクル	1950 サイクル	2150 サイクル	2450 サイクル
	完了	0/32 故障	0/32 故障	0/32 故障	0/32 故障	2/32 故障	5/32 故障	8/32 故障	15/32 故障	20/32 故障	26/32 故障
アンダーノイルなし	継続中	0/32 故障	0/32 故障	0/32 故障	0/32 故障						
独ヘンケルの UF1137_H	継続中	0/40 故障	0/40 故障	0/40 故障	0/40 故障	0/40 故障					
米 Master bond の EP3UF_M	継続中	0/40 故障	0/40 故障	14/40 故障	31/40 故障						
MC7685-UFS	完了	0/32 故障	0/32 故障	0/32 故障	0/32 故障	1/32 故障	2/32 故障	2/32 故障	2/32 故障	6/32 故障	14/32 故障
MC7885-UF	完了	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	1/32 故障	4/32 故障
ナミックスの 8410- 406B	完了	0/32故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障
ナミックスのU8437-	完了	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障
2_N	継続中	0/80 故障	0/80 故障	0/80 故障	0/80 故障	0/80 故障					

表8:温度サイクル-40℃~125℃の EPC2001C の結果

製品/DOE						EPC2053					
ストレス条件:-40℃ ~125℃	状態	300 サイクル	550 サイクル	850 サイクル	1000 サイクル	1250 サイクル	1550 サイクル	1750 サイクル	1950 サイクル	2150 サイクル	2450 サイクル
アンダーフィルなし	完了	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	2/32 故障	3/32 故障	3/32 故障	3/32 故障
ヘンケルのUF1137_H	継続中	0/40 故障	0/40 故障	0/40 故障	0/40 故障	0/40 故障					
Master bondの EP3UF_M	継続中	1/40 故障	7/40 故障	15/40 故障	25/40 故障	39/40 故障					
MC7685-UFS	完了	0/32 故障	0/32 故障	0/32 故障	1/32 故障	17/32 故障	32/32 故障	32/32 故障			
MC7885-UF	完了	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	1/32 故障	1/32 故障	1/32 故障
ナミックスの 8410-406B	完了	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障
	完了	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障	0/32 故障
フミックスのU8437-2_N	継続中	0/40 故障	0/40 故障	0/40 故障	0/40 故障	0/40 故障					

表 9: 温度サイクルー40℃~125℃の EPC2053 の結果

製品/DOE	EPC2001C								
ストレス条件: -55℃~150℃	状態	300 サイクル	600 サイクル	900 サイクル	1100 サイクル	1300 サイクル			
アンダーフィルなし	完了	0/16 故障	0/16 故障	1/16 故障	1/16 故障	2/16 故障			
ヘンケルの UF1137_H	継続中	0/20 故障	0/20 故障	0/20 故障	1/20 故障				
Master bondの EP3UF_M	継続中	0/20 故障	0/20 故障	4/20 故障	6/20 故障				
MC7685-UFS	完了	0/16 故障	0/16故障	0/16 故障	1/16故障	1/16 故障			
MC7885-UF	完了	0/16 故障	0/16故障	0/16 故障	0/16 故障	0/16故障			
ナミックスの 8410- 406B	完了	0/16 故障	0/16 故障	0/16 故障	0/16 故障	0/16 故障			
ナミックスのU8437-	完了	0/16 故障	0/16 故障	0/16 故障	0/16 故障	0/16 故障			
2_N	継続中	0/20 故障	0/20 故障	0/20 故障	0/20 故障				

表10:温度サイクル-55℃~150℃の EPC2001C の結果

製品/DOE	EPC2053								
ストレス条件:−55℃ ~150℃	状態	300 サイクル	600 サイクル	900 サイクル	1100 サイクル	1300 サイクル			
アンダーフィルなし	完了	0/16 故障	0/16 故障	0/16 故障	0/16 故障	1/16 故障			
ヘンケルのUF1137_H	継続中	0/20 故障	0/20故障	0/20 故障	0/20 故障				
Master bondの EP3UF_M MC7685-UFS	継続中	5/20 故障	15/20 故障						
MC7685-UFS	完了	1/16 故障	9/16 故障	13/16 故障					
MC7885-UF	完了	2/16 故障	1/16 故障	7/16 故障					
ナミックスの 8410-406B	完了	0/16 故障	0/16 故障	0/16 故障	0/16 故障	0/16 故障			
ナミックスのU8437-2_N	完了	0/16 故障	0/16 故障	0/16 故障	0/16 故障	0/16 故障			

表11:温度サイクル-55℃~150℃の EPC2053 の結果

両方の温度範囲で、ナミックスのアンダーフィル (U8437-2_N と 8410-406B) は、アンダーフィルがない場合と比べて、寿命に大 きな利点があります。同じことが独ヘンケル (UF1137_H) にも 当てはまります。一方、米 Master BondのEP3UF は信頼性を低 下させることが分かりました。これは主にガラス転移温度 Tg が 低いためであり、当社のすべての調査では、Tg をはるかに超えて アンダーフィルを実施したからです。ただし、材料特性に基づく と、Master Bond の EP3UF は 70℃以下にとどまるアプリケーシ ョンに適した候補かもしれません。

図14: EPC2206の温度サイクル結果のワイブル・プロット

6.3 断続動作寿命の調査

温度サイクルTCでは、デバイスとプリント回路基板の両方が、 周囲温度を循環させるチャンバ内に配置され、アセンブリ全 体にわたって等温温度変化になるようにします。断続動作寿命 (IOL:Intermittent Operating Life)では、デバイス内部で電力を 消費することによって温度上昇を実現します。したがって、IOLでは、 デバイスと、チップの近くのプリント回路基板のみの温度が変わりま す。この結果、GaN トランジスタとプリント回路基板の間の CTE (熱 膨張率)の不一致に起因するはんだ接合の応力は、温度サイクルの 場合ほど大きくありません。ただし、完全なサイクルを完了する時間 は、TCよりもはるかに速くなります (IOL は、電力温度サイクルとして も知られているかもしれません)。

図 15 は、2つの異なる条件下で、故障するまでテストした EPC2206 の 32 個のサンプル群の結果です。すべての場合において、各サイク ルは、30 秒の加熱期間と、それに続く、さらに 30 秒の冷却期間で構 成しました。図 16 で、青色の情報は 40°Cと100°Cの間で循環したデ バイスを示し、オレンジ色の情報は40°Cと 150°Cの間で循環したデ バイスを示しています。いずれの場合も、はんだ疲労が唯一の故障メ カニズムであるため、ワイブル適合の傾きは、ほぼ同じでした。ただ し、平均故障時間は、各サイクル中に到達したT_{max}とΔTによって強く 加速されました。

さらに、アンダーフィルにナミックスの U8437-2 を使った部品の3番目の群で、40℃~150℃の間で循環を開始しました。5万3000サイクル後、故障は観測されませんでした。図16の緑色の線は、5万3001サイクル後に、1つの故障を想定しているため、このアンダーフィルの性能の下限と見なすことができます。明らかに、TCの調査で分かったように、ナッミクスのアンダーフィルは、周期的な温度ストレス下での寿命の大幅な改善(100倍以上)に貢献することが分かりました。

EPC2206の断続動作寿命

注:アンダーフィル (ナミックスの U8437-2)を使った部品は、5万 3000 サイクル 後も故障が発生せずに、まだテスト中なので、緑色のワイブル「適合」は下限を表します。

図15: EPC2206の断続動作寿命の結果のワイブル・プロット。アンダー フィル (ナミックスの U8437-2)を使った部品は、5万 3000 サイクル後も 故障が発生せずに、まだテスト中なので、緑色のワイブル「適合」は下限 を表すことを記してておきます。

フェーズ15テスト

6.4 アンダーフィルを選択するためのガイドライン

eGaN FET で使うアンダーフィルを選択するための主なガイドラインが以下です:

- ・アンダーフィルの CTE は、はんだ接合部の CTE (24 ppm/℃)を中心として、16~32 ppm/℃の 範囲内でなければなりません。チップとプリント回路基板の間のマッチングをより良くするため、 この範囲内のより小さい値を推奨します。
- ・ガラス転移温度 (Tg) は、最大動作温度を十分に上回っていなければなりません。Tg を超えて動 作すると、アンダーフィルは剛性を失い、はんだ接合部を保護しなくなります。
- ・ 6~13 GPaの範囲のヤング(または貯蔵)弾性率。弾性率が小さすぎると、アンダーフィルは、それに対応して、はんだ接合部からの応力を緩和しません。大きすぎると、大きな応力がチップの端に集中し始めます。

この調査の実験結果から、ヘンケルのUF1137_H、およびナミックスの 8410-406B と U8437-2_N のアンダーフィルは、eGaN FET に使ったときに、熱機械的信 頼性を大幅に向上させます。

セクション7:GaN オン・シリコンのレーザー・ドライバの信頼性テ スト結果

7.1 大電流パルス下での長期安定性

このテスト方法の概念は、実際の Lidar 回路の部品に、最終的なミッション・プロファ イルを十分上回るパルスの総数をストレスとして与えることです。自動車用 Lidar のミ ッション・プロファイルは、ユーザーごとに異なります。標準的な自動車のプロファイル では、100 kHzのパルス繰り返し周波数 (PRF)、1日当たり2時間の動作で、15年の 寿命が必要になります。これは、合計約4兆の Lidar パルスに相当します。いくつかの 最悪のシナリオ (高い使用頻度)では、耐用年数に10~12兆パルスが必要になること もあります。

このテスト方法は、システム性能とデバイス特性の安定性を検証するために、完全なミ ッション・プロファイルの最後を十分超えるまでデバイスの母集団をテストすることに よって、Lidar ミッションでの eGaN デバイスの寿命を直接実証します。

多数のパルスを得るために、部品は、通常の Lidar 回路よりも、はるかに高いパルス繰り返し周波数 (PRF) で連続的にストレスが加えられます。

この調査では、EPC2202 (80 V) と EPC2212 (100 V) の 2 種の一般的な AEC 品質の部 品をテストしました。2 種とも 4 個の部分を同時にテストしました。ストレス期間中、2 つの重要なパラメータをすべてのデバイスで継続的にモニターします: (1) ピーク・パ ルス電流と、(2) パルス幅です。これらのパラメータは、Lidar システムの範囲と分解能 の両方にとって重要です。

図16 と 17 は、最初の 13 兆パルスにわたるこのテストの結果です。パルスの累積数 は、一般的な自動車の寿命をはるかに超えており、最悪の使用条件をカバーしていま す。パルスの幅や振幅のいずれにも劣化やドリフトが観測されていないことに注目して ください。これは、eGaN デバイスの状態を間接的にモニターするものですが、Lidar の 性能に悪影響を与える劣化メカニズムが発生していないことを示しています。

AEC-Q101 シリーズのディスクリート FET

• 8 サンプル(7000 時間以上)

• 故障ゼロと完璧なパルス安定性

図 16:Lidar の 13 兆パルスにわたるパルス幅 (下の 図) とパルスの高さ (中央の図) の長期安定性。4 個 の EPC2202 (赤色) と 4 個の EPC2212 (青色) のデ ータが重ねてプロットされています。

過酷な使用条件における自動車の寿命に相当するパ ルスの総数にわたって、これらの重要なパラメータが優 れた安定性を示していることに注目してください。

図 17: Lidar 信頼性テスト期間中のR_{DS(on)} と V_{TH}の長期安定性。これらのパラメータは、Lidar ストレスを短時間中断することによって、すべ ての部品について 6 時間間隔で測定しました。V_{TH} は、一連のゲート電圧で R_{DS(on)}を測定することによって推測されたことに注意してくださ い。4 個の EPC2202 (赤色) デバイスと 4 個の EPC2212 (青色) デバイスのデータを重ね合わせてプロットしています。使用頻度の高い条件 における自動車の寿命に対応する 13 兆パルスにわたって、これらの重要なパラメータの安定性が優れていることに注目してください。

7.2 GaN オン・シリコンのモノリシック・レーザー・ドライバIC

eGaNトランジスタを使ったマルチチップのディスクリート・ソリューションは、実装面積が小さく、スイッチング特性が優れているという 利点があるため、飛行時間 (ToF:time of flight)型 Lidar (光による 検出と距離の測定)システムに広く採用されています。EPC は最近、 高速 GaNドライバとディスクリート GaNトランジスタを統合した GaN レーザー駆動 IC の新しい製品ファミリーを発表しました (図 18 を参 照)。この集積化したモノリシック Lidar ソリューションは、既存のデ ィスクリート・ソリューションよりも、さらに高い性能、より小さな形 状、そして、より低いコストを提供します。この結果、ロボット、監視シ ステム、ドローン、自動運転車、掃除機など、より幅広い Lidar アプリ ケーションが可能になります。

図18:eToF™集積回路の EPC21601 には、ドライバとパワーFET が 登載されています。

集積化 GaN レーザー駆動 IC 製品の最初の2品種の製品 (EPC21601とEPC21701)は現在生産中です。表12に、最初の2品 種の品質認定したIC製品の主な仕様をまとめました。

型番	チップ面積 (mm×mm)	主な仕様
EPC21601	S (1.5 X 1)	40 V、15 A、3.3 V 論理の eToF レーザー駆動 IC
EPC21701	S (1.7 X 1)	80 V、15 A、3.3 V 論理の eToF レーザー駆動 IC

表12: EPC の レーザー駆動 IC の初期の製品ファミリー

7.2.1 品質認定テストの概要

EPC21601 と EPC21701 は、JEDEC 規格 JESD47K に従って、さまざ まなストレス・テストを受けました。このストレス・テストには以下があ ります:

- ・高温動作寿命 (HTOL: High Temperature Operating Life):部品 は、T」=125℃での最大推奨動作条件に 1000 時間曝されます。
- ・高温高湿バイアス (THB: Temperature Humidity Bias):部品は、 周囲温度 85℃、相対湿度 (RH: relative humidity) 85%に 1000 時 間曝されながら、最大推奨動作条件でテストされます。
- ・高温保存寿命 (HTSL: High Temperature Storage Life):部品は 150°Cで 1000 時間ベークされます。

- ・プレコンディショニング (PC: Preconditioning):部品は、次の手順を順番に実行されます:(1)125℃で最小24時間ベーク;(2) 耐湿性レベル1 (MSL1: Moisture Sensitivity Level 1)条件 (以下のMSL1の詳細を参照);(3)3回リフローする。
- ・バイアスなしの高加速試験 (uHAST: Unbiased HighlyAccelerated Test):部品は、130℃、相対湿度85%、蒸気圧33.3 psia の非結露 多湿環境で 96 時間ストレスを受けます。
- ・温度サイクル (TC):部品は、-40℃から+125℃までの極端な低温 と高温に交互に曝され、合計 850 サイクル実施します。
- ・耐湿性レベル1 (MSL1: Moisture Sensitivity Level 1):部品は湿気、温度、および3サイクルのリフローに曝されます。MSL1は、最も厳しい耐湿性レベルであり、85℃、湿度85%で168時間維持する必要があります。
- ・静電気放電 (ESD) の特性:部品は、人体モデル (HBM: Human Body Model) とデバイス帯電モデル (CDM: Charged Device Model) の両方に基づいてテストされ、静電気放電イベントに対す るデバイスの感受性を評価します。

この品質認定でテストされたすべてのデバイスは、外観の目視検査を 受けました。光学顕微鏡を使ってチップを検査し、組み立て、輸送、 または不適切な取り扱いに起因するチップスケール・パッケージへの 物理的損傷の兆候 (エッジの欠けや亀裂など)をチェックしました。 損傷した部分は、テストの母集団から取り除きました。

製品のデータシートに記載されている仕様への準拠を検証するため に、ストレスの前後ですべてのサンプルに対して、25℃でパラメータ測 定を実施しました。測定したパラメータには、ドライバ(V_{DD}ピン)の 静止電流と動作電流、しきい電圧やドレイン-ソース間漏れ電流、論 理入力信号(V_{IN})に対する入力しきい電圧とヒステリシスなどの出力 トランジスタの直流における静的パラメータが含まれます。

すべての品質認定テストにおいて、部品は、4 層、厚さ 1.6 mm の高 Tg の FR-4 アダプタ・カードに実装しました。部品をアダプタ・カード に取り付けるために、水溶性 (W/S) フラックスを備えたタイプ 4 の SAC305 はんだペーストを使いました。組み立て後、フラックス残留 物を脱イオン (DI:deionized) 水を使って洗浄しました。

7.2.1.1 高温動作寿命 (HTOL: HIGH TEMPERATURE OPERATING LIFE)

部品は、推奨最大動作温度、推奨最大動作電圧で 1000 時間のストレス期間に曝しました。表 13 に示すように、EPC21601 と EPC21701 について、それぞれ 3 つのロットで、1 ロット当たり 77 サンプルをテストしました。このテストは JESD22-A108 に準拠して実施しました。

ストレス・テ スト	型番	チップ面積 (mm×mm)	テスト条件		全サンプル数 (サンプ ル数×ロット数)	継続時間 (時間)
HTOL	EPC21601	S (1.5 x 1)	$T_J = 125^{\circ}C_{\circ}V_{DD} = 5.5 V_{\circ}V_{D_DC} = 30 V_{\circ}R_{LOAD} = 2 \Omega_{\circ}$ $V_{IN} = 3.3 V_{P,P^{\circ}} (10) パルス・バースト; バースト周波数 = 1 kHz_{\circ} パルス周波数 = 25~30 MHz)$	0	77 x 3	1000
HTOL	EPC21701	S (1.7 x 1)	T _J = 125°C、V _{DD} = 5.5V、V _{D_DC} = 60V、R _{LOAD} = 4Ω、V _{IN} = 3.3V _{P-P} 、 (10パルス・バースト;バースト周波数 = 1 kHz、 パルス周波数 = 25~30 MHz)	0	77 x 3	1000

表13:高温動作寿命テスト

7.2.1.2 高温高湿バイアス (THB: TEMPERATURE HUMIDITY BIAS)

部品は、推奨最大動作電圧 (EPC21601 の場合は V_{D_DC} = 30 V、EPC21701 の場合は V_{D_DC} = 60 V、V_{DD} = 5.5 V)、85℃、相対湿度 85%に 1000 時間のストレス期間に曝しました。この結果を以下の表 14 に示します。3 つのロットと、1 ロット当たり 25 個のサンプルをテストしまし た。このストレス・テストは JESD22-A101 に準拠して実施しました。

ストレス・テ スト	型番	チップ面積 (mm×mm)	テスト条件	故障数	全サンプル数 (サンプ ル数×ロット数)	継続時間(時間)
ТНВ	EPC21601	S (1.5 x 1)	$T_A = 85^{\circ}$ C, $R_H = 85\%$, $V_{DD} = 5.5$ V, $V_{D_DC} = 30$ V, $V_{IN} = 0$ V	0	25 x 3	1000
ТНВ	EPC21701	S (1.7 x 1)	$T_A = 85^{\circ}$ C, $R_H = 85\%$, $V_{DD} = 5.5$ V, $V_{D_DC} = 60$ V, $V_{IN} = 0$ V	0	25 x 3	1000

表14:高温高湿バイアス・テスト

7.2.1.3 高温保存寿命 (HTSL: HIGH TEMPERATURE STORAGE LIFE)

EPC21601 の 3 ロットと EPC21701 の 1 ロット (1 ロット当たり 25 個の部品)を周囲温度 150℃に合計 1000 時間曝しました。

ストレス・テ スト	型番	チップ面積 (mm×mm)	テスト条件	故障数	全サンプル数 (サンプ ル数×ロット数)	継続時間(時間)
HTS	EPC21601	S (1.5 x 1)	$T_A = 150$ °C	0	25 x 3	1000
HTS	EPC21701	S (1.7 x 1)	空気、バイアスなし	0	25 x 1	1000

表15:高温保存寿命

7.2.1.4 バイアスなしの高加速テスト (uHAST: Unbiased Highly Accelerated Test)

EPC21601 の 3 ロットと EPC21701 の 1 ロット (1 ロット当たり 25 個の部品) を、以下の表 16 にまとめたように、周囲温度 130℃、相対湿度 85%、蒸気圧 33.3 psia に 96 時間曝しました。

ストレス・テ スト	型番	チップ面積 (mm×mm)	テスト条件	故障数	全サンプル数 (サンプ ル数×ロット数)	継続時間(時間)
uHAST	EPC21601	S (1.5 x 1)	T - 120°C D - 9506 V - 22 2 acia バイマフカ	0	25 x 3	96
uHAST	EPC21701	S (1.7 x 1)	T _A = 130°C、R _H = 85%、V _P = 33.3 psia、バイアスなし	0	25 x 1	96

表16:バイアスなしの高加速テスト

7.2.1.5 温度サイクル (TC)

EPC21601 の 3 ロットと EPC21701 の 1 ロット (1 ロット当たり 25 個の部品) を、−40℃と 125℃の間の温度サイクルを合計 850 サイクル実施 します。JEDEC 規格 JESD22-A104 に準拠しています。最小滞留時間は 5 分で、加熱/冷却の速度は毎分約 15℃でした。

ストレス・テ スト	型番	チップ面積 (mm×mm)	テスト条件	故障数	全サンプル数 (サンプ ル数×ロット数)	継続時間(時間)
TC	EPC21601	S (1.5 x 1)		0	25 x 3	850
ТС	EPC21701	S (1.7 x 1)	1 _A = = 40 CMS + 123 CM 7 7 X & C	0	25 x 3	850

表17:温度サイクル・テスト

7.2.1.6 耐湿性レベル1 (MSL1: Moisture Sensitivity Level 1)

部品は、鉛フリーはんだに関する IPC/JEDEC 共同規格 J-STD-020 に準拠した MSL1 条件に曝されました。

ストレス・テ スト	型番	チップ面積 (mm×mm)	テスト条件	故障数	全サンプル数 (サンプ ル数 × ロット数)	継続時間(時間)
MSL1	EPC21601	S (1.5 x 1)	T — 05℃ D — 9504 2回のUフロー	0	25 x 3	168
MSL1	EPC21701	S (1.7 x 1)	$r_{\rm A} = 8500 r_{\rm H} = 850000 \pm 100000 = 100000000000000000000000$	0	25 x 3	168

表18:耐湿性レベル・テスト

7.2.1.7 静電気放電 (ESD) の感度

EPC21601 の 1 ロットと EPC21701 の 1 ロットについて、人体モデル (HBM: human body model) を使った ESD 感度テストを実施しました。 テストは JS-001-2017 JEDEC 規格に従って実施しました。 デバイスのパラメータは、ESD テストの前後で測定しました。 この結果が以下の表 19 です。 EPC21701 は、定格 500 V で HBM に合格し、 EPC21601 は定格 250 V で HBM に合格しました。

デバイス帯電モデル (CDM: Charged Device Model) の定格は、デバイスの合計パッケージ・サイズに大きく依存します。小さい部品は、大きな 部品と比べて、特定の電圧において CDM 損傷の影響を受けにくくなります [16]。EPC21601 と EPC21701 は、どちらもパッケージのないチップ スケール・パッケージ (CSP) 製品です。加えて、両方のデバイスのアクティブなチップ面積は非常に小さく、それぞれ測定値で 1.87 mm² と 1.65 mm² です。CDM テストは以前、EPC21601 や EPC21701 よりも大幅に大きなチップ・サイズの EPC の大量の CSP 製品に対して実施され、一貫 して 1 kV の CDM 定格がテストされました。したがって、EPC21601 と EPC21701 は両方とも、マトリックスによって 1 kV の CDM 定格が可能で なければなりません。

ストレス・テスト	型番	チップ面積 (mm×mm)	テスト条件	故障数	全サンプル数(サンプル数×ロット数)
ESD-HBM	EPC21601	S (1.5 x 1)	250 V	0	3 x 1
ESD-HBM	EPC21701	S (1.7 x 1)	500 V	0	3 x 1

表19 静電気放電 (ESD) の感度

7.2.2 故障するまでテストするという方法

標準の品質認定テストの目標は、長期間または一定のサイクル数にわたってテストした比較的大きな数の部品グループにおいて、故障がゼロに なることです。このテストから合格するまでのアプローチの課題は、品質認定テストの結果を、さまざまなミッション・プロファイルに適用した り、その結果を使って特定の動作条件での寿命を正確に予測したりすることが難しいことです。

したがって、データシートの制限と所定のミッション・プロファイルの間のマージン量を理解できるようになるため、故障点までのデバイスのテ ストが妥当と言えます。次に、本質的な根本的な故障メカニズムを理解するために故障解析を実施することも同様に重要です。基本的な根本原 因を理解することで、より一般的な一連の動作条件に対して、製品の安全な動作寿命を決定できます。

7.2.3 Lidar (光による検出と距離の測定) 用途向けeToFレーザー・ドライバICの主なストレス要因

GaN ゲート・ドライバと eGaN パワー・トランジスタをチップスケール・パッケージに統合することで、寄生インダクタンスが大幅に低減され、速度、最小パルス幅、消費電力がさらに改善できます。デバイスの多くは集積化されており、直接アクセスできないため、主要なストレス要因を分離するという課題も生じます。この調査の最初のステップは、Lidar 用途の端の動作条件でICデバイスが遭遇する主要なストレス要因を特定することです。

EPC21601 と EPC21701 は両方とも、それぞれ 1.5 × 1.0 mm と 1.7 × 1.0 mm のチップスケール BGA の形状で販売しています。 レーザー・ド ライバ IC のパッケージ技術は、 EPC のディスクリート・パワー・トランジスタに長年使われてきたため、 IC 製品のパッケージ関連の信頼性は、 以前のフェーズの信頼性試験レポートおよび関連出版物でカバーされていました [2,6,17~22]。

このフェーズ 15 のレポートでは、テストと故障解析の焦点は、IC デバイスのレベルにあります。高温動作寿命 (HTOL) は、Lidar の動作条件を 最もよくエミュレートするため (図 19a を参照)、長期間にわたるさまざまな加速バイアス条件と温度の影響を調査するために使うテストとして HTOL を選択しました。

EPC21601 は、EPC21701 よりも数か月早く製品化されたため、この故障するまでのテストの調査のテスト媒体として選択しています。この2種類の製品のレーザー・ドライバ回路設計は同じです。両者の主な違いは、出力 GaNトランジスタのドレイン電圧 V_D定格です。EPC21601 の絶対 V_D最大定格は40V ですが、EPC2701 は80V です。

レーザー・ドライバ IC の EPC21601 と同様に、3 つの主なストレス要因を特定し、以下にまとめました:

・V_{DD}は、レーザー駆動回路の低電圧 (LV) GaN FET、および出力トランジスタの高電圧 (HV) GaN FET に駆動電圧を供給する論理電源電圧です。

- ・Vpは主に、HV 出力 GaNトランジスタのドレイン端子に印加されるレーザー駆動電圧です。
- ・動作周波数は、Lidarの動作に影響を与えるもう1つのストレス要因です。

フェーズ15テスト

7.2.4 V_{DD}、論理電源電圧

EPC21601 が短いパルスのバーストを生成して動作していると き、論理電源電圧 (V_{DD}) がレーザー駆動回路の LV GaN FET のゲート端子と HV GaN パワー・トランジスタのゲート端子に 印加されます。これは、バースト周波数 1 kHz、非常に小さい デューティ比 (約 0.02%)、高い動作周波数で、すべての GaN FET に対して動的ゲート・テストを実行するのと同等です。パ ルスが供給されていないとき、デバイスはオフ状態にあり、ゲ ート・バイアスは、ほぼゼロになります (図 19b を参照)。

品質認定 HTOL テストでは、V_{DD} は絶対最大定格 5.5 V でバ イアスされ、接合部温度 125℃での 1000 時間のテストの後 でも、問題は見つかりませんでした。デバイスの丈夫さをテス トするために、V_{DD} 電圧を 7 V と高い値に増やしました。これ は絶対最大定格の 125%以上です。このストレス状態は、ユー ザーによる通常動作中の V_{DD} ピンの最悪の過電圧リンギング 問題に対応します。表 20 に、16 個のデバイスを 7 V の V_{DD}、 接合部温度 125℃で最大 1049 時間テストした結果をまと めました。故障は発生しませんでした。これは、レーザー駆 動 IC 製品に、大きなマージンがあることを示しています。

故障がゼロだったため、この結果は、製品にどの程度のマージ ンが設計されていたか、またはストレス源 V_{DD}の特定のミッシ ョン・プロファイルでの寿命を正確に予測するための決定を行 うためのものではありません。したがって、デバイスが故障す るまでのテストには、より厳しいストレス条件を適用しなけれ ばなりません。その目的は、部品を素早く故障させ、故障解析 を実施して、根底にある故障モードとメカニズムを理解するこ とです。

V_{DD}ストレスの電圧加速を決定するために、表 21 に示すように、25℃で 8.5 V から 9.5 V までの一連のテストを実施しました。V_{DD}が 8.5 V のとき、1000 時間を超えた後に合計 3 つの故障が見つかりました。非常に大きな電圧加速である 9.5 V では 305 時間以内に、ほぼすべての部品が故障しました。

図19a:レーザー駆動集積回路の EPC21601 と EPC21701 の回路ブロック図

図19b:バースト周波数 (青色)1 kHz、デューティ比が約 0.02%、MHz オ ーダーの動作周波数での動作条件の図

ストレス・テ スト	型番	テスト条件	故障数	全サンプル数 (サンプ ル数×ロット数)	継続時間(時間)
HTOL	EPC21601	V_{DD} = 7 V、T_J = 125°C 、V _{D_DC} = 30 V、R _{LOAD} = 2 Ω V _{IN} = 3.3 V _{P-P} 、バースト周波数 = 1 kHz; 動作周波数 = 30 MHz	0	16	1049

表20:EPC21601のHTOLテスト結果 ($V_{DD} = 7V, T_J = 125^{\circ}$)

ストレス・テ スト	型番	テスト条件	故障数	全サンプル数 (サンプ ル数×ロット数)	継続時間(時間)
HTOL	EPC21601	V _{DD} = 8.5 V、T _J = 25°C、V _{D_DC} = 30 V、R _{LOAD} = 2 Ω V _{IN} = 3.3 V _{P-P} 、バースト周波数 = 1 kHz; 動作周波数 = 30 MHz	3	16	1049
HTOL	EPC21601	V_{DD} = 9.5 V、T_J = 25℃ 、V _{D_DC} = 30 V、R _{LOAD} = 2 Ω V _{IN} = 3.3 V _{P.P} 、バースト周波数 = 1 kHz; 動作周波数 = 30 MHz	15	16	305

表21:EPC21601のHTOLテスト結果 ($V_{DD} = 8.5$ V、 $V_{DD} = 9.5$ V、 $T_J = 25^{\circ}$ C)

V_{DD}を 8.5 V に固定し、25℃と 125℃の 2 つの異なる温度でも、温度加速の影響を調べました。この結果を表 22 にまとめました。顕著な温度 加速が示されています。

ストレス・テ スト	型番	テスト条件	故障数	全サンプル数 (サンプ ル数×ロット数)	継続時間(時間)
HTOL	EPC21601	V _{DD} = 8.5 V、T _J = 25°C、V _{D_DC} = 30 V、R _{LOAD} = 2 Ω V _{IN} = 3.3 V _{P-P} 、バースト周波数 = 1 kHz; 動作周波数 = 30MHz	3	16	1049
HTOL	EPC21601	V _{DD} = 8.5 V、T _J = 125°C、V _{D_DC} = 30 V、R _{LOAD} = 2 Ω V _{IN} = 3.3 V _{P-P} 、バースト周波数=1 kHz; 動作周波数=30MHz	15	16	718

表22:T」= 25℃および T」= 125℃、V_{DD} = 8.5 V での EPC21601 の HTOL テスト結果

故障解析の結果、これらはすべて、データシートの最大制限値 20 mA 超えた静止電流によるソフト・パラメータ障害であることが分かりました [23]。詳細に検査した結果、静止電流がデータシートの制限を超えたのは、指定された Lidar 動作、すなわち、オフ状態時の $V_D = 20 V$ 、 $V_{IN} = 3.3 V$ 、 $V_{DD} = 5 V$ で、故障をテストした場合のみでした。 V_{DD} ピンのみの単純な通常の直流特性評価では、故障モードは明らかになりませんでした。

静止電流のソフト障害が 15 V の V_D で Lidar 動作に曝されたとき、そのパルスの完全性は変わりませんでした。図 20 は、V_{IN} (EPC21601 への論 理入力) の入力信号の波形 (青色) と静止電流障害の V_D からの対応する出力信号の波形 (緑色と黄色) です。 ここでは、パルスの歪みやパルス の欠落は観測されませんでした。 これは、デバイスが非常に高いV_{DD}ストレスによって損傷した場合でも、依然として機能しており、レーザー・パ ルスの特性に悪影響がなかったことを示唆しています。

図20:入力波形 (青色) と静止電流障害に対応する出力波形 (緑色と黄色)

さまざまな電圧と温度でのすべての故障は同様の「ソフトな」 電気的 故障を示したため、根底にある根本原因を特定するために物理的な 故障解析を実施しました。主にドライバ回路内の LV GaN FET のゲー ト破壊が、ストレスの電圧や温度に関係なく、すべての故障の唯一の 故障メカニズムであることが分かりました。この結果は、パルスの生 成時に LV および HV の GaN FET のゲートに、基本的に V_{DD} 電圧が 印加されるため、回路解析に基づいて予想できます。

図 21 は、室温での 2 つの異な V_{DD} 電圧の故障するまでの時間デ ータを示しています。このデータは、最尤推定 (MLE:maximum likelihood estimation)を使った各電圧レッグの2パラメータのワイ ブル分布を使って分析しました。適合度はグラフの実線で示されてい ます。故障解析を通じて単一の故障モードが見つかったため、ワイブ ル形状 (または傾き) パラメータは、すべての電圧レッグで同じになる ように制約しました。

図21:8.5 V (青色) および 9.5 V (赤色) の V_{DD}での EPC21601 の故 障を示すワイブル・プロット。 いずれもT_J = 25℃。

フェーズ15テスト

9.5 V の V_{DD} レッグの計算された平均故障時間 (MTTF: meantime-to-failure) は約117時間で、これは 4.2 × 10⁵ 秒に相当し ます。フェーズ 14 の信頼性レポート [2] の図 1 と 2 では、25°Cに おける EPC2212 の 9.5 V の直流 V_{GS} テストの MTTF は約 150 秒 で、0.02%のバースト・デューティ比でスケーリングすると 7.5×10⁵ 秒になります。これは、HTOL テストで使いました。EPC21601 と EPC2212 は同じゲート構造であり、同じゲート製造プロセスを使っ ています。EPC2212 での静的直流 V_{GS} テストから変換されたこの結 果は、基本的に数 100 個の GaN FET の動的加速ゲート・テストを受 けた EPC21601 の測定された MTTF に近いものです。

テストの設定と実装の違いによって、2 つの MTTF 値が正確に一致 しないことは理解できます。例えば、すべての LV FET のゲートは、 非常に短いパルス中に同じ V_{DD} ピンを介して同時にストレスを受け、 ゲート上で若干のリンギングが発生することが予想されます。これ は、EPC2212 の直流加速ゲート・テストの結果と比べて、EPC21601 の MTTF が若干悪いことを説明できます。

EPC21601 と EPC2212 の間の同等の MTTF の結果は、フェーズ 14 の信頼性レポート [2] でゲートの信頼性のために、EPC が開発した物 理ベースのモデルの妥当性も裏付けています。電圧加速に関する同 じ寿命方程式 (式1) が、2 種類の異なるバイアスでの V_{DD}の測定デ ータに対してプロットされています。

図22 は、25℃での EPC21601 の測定した加速データに対する寿 命予測を示しています。この適合では、25℃、V_{DD} の最大電圧定 格 5.5 V において、故障率が 1 ppm 以下で、25 年を超える寿命が 予測されました。この結果は、静的直流ゲート・バイアス下におけ る 5.5 V でのゲートの外挿した寿命ともよく一致しています。

図22:エラー・バーを付けた2種類の異なる電圧での EPC21601 の MTTF データを、25℃での V_{DD} に対してプロットしています。実線は 衝突電離寿命モデルに対応しています。100 ppm、10 ppm、1 ppm の故障するまでの時間の外挿も示しています。

図23 は、V_{DD}を 8.5 V に固定したときの 2 種類の異なる温度 (25℃ と 125℃) での故障するまでの時間のデータです。このデータでは、 最尤法推定 (MLE) を使った各温度レッグの 2 パラメータのワイブル 分布を使った分析もしました。故障解析を通じて単一の故障モード が特定されたため、ワイブル形状 (または傾き) パラメータは、両方 の温度レッグで同じになるように制限しました。各デバイスの故障す るまでの時間は、部品をオーブン (125℃レッグ) とマザー・ボードか ら取り出した後に、完全な ATE ポスト・スクリーニングを実施して記 録しました。複数の「ソフト」静止電流故障が、125℃レッグの 72 時 間後の同じ最初の読み取り点で見つかりました。ここで、垂直故障デ ータ点の群がワイブル・プロットに示されています。表 22 に示すよ うに、125℃レッグでは 718 時間後に最後の故障が検出されました が、25℃レッグでは 1000 時間以上のテスト後に測定されたソフト故 障は合計 3 件のみでした。

図23: 接合部温度 25℃ (青色) および 125℃ (赤色)、V_{DD} = 8.5 V における EPC21601 の故障を示すワイブル・プロット。

図24 は、V_{DD} = 8.5 V、25℃および 125℃での MTTF データのアレ ニウス・プロットです。ここで、アレニウスの式 [24-26] を使って 0.35 eVの活性化エネルギーを計算しました。この結果は、ディスクリート GaN 製品の静的 HTGB テストを実施したときに観測された結果と は異なります。初期故障解析では、25℃または 125℃のテスト温度 に関係なく、すべてのソフト静止電流故障の根本的な故障モードとし て、同一のゲート破壊が示されました。

温度加速の原因となる故障メカニズムについては、さらなる調査が 必要ですが、V_{DD}ストレス源下でのレーザー・ドライバ IC は非常に丈 夫であることが証明されています。

フェーズ15テスト

図24:2種類の異なる温度でのEPC21601のMTTFデータは、V_{DD}が 8.5 VのT⁻¹ (K⁻¹) に対してプロットしています。実線はアレニウスの式 に対応しており、0.35 eVの活性化エネルギーが分かりました。

7.2.5 V_D、レーザー駆動電圧

V_Dピンに接続する回路を詳細に調べると、加速されたV_DのHTOL がEPC21601で 2つの潜在的な故障モードを引き起こす可能性が あります。

- V_Dは主に、HVのGaN FETのドレイン端子に送られます。Lidar動作の性質上、HVの出力FETはほとんどの場合、逆ドレイン・バイアス下にあります。レーザー・パルスが生成されると、HV FETがオンになり、電流が流れます。加速V_DのHTOLテストは本質的に、高いデューティ比で動的HTRBテストを実施します。したがって、ディスクリートGaNトランジスタに適用される加速ドレイン・バイアス・テストによる固有の故障モードです。
- 2. V_Dピンは、HVのFETのドレイン・ノードへの接続以外に、レーザー・ ドライバ回路の1つのみに関連しますが、デバイスによって生成さ れるパルスの数を決定します。加速されたV_Dストレスによってその 経路が損なわれると、パルスの欠落が発生する可能性があり、これ はLidar用途にとって、もう1つの重要な故障モードです。

HTOL品質認定テストは、データシート[23]で指定されている最大推 奨電圧である30 VのV_Dで実施しました。加速V_DのHTOLテストのマト リックスを実施し、表23にまとめました。60 VのV_Dが選択されたの は、これが最大推奨電圧定格の2倍であり、非常に加速された条件 であるためです。ただし、この電圧は、HVの出力FETの他の既知の固 有故障モードを引き起こすほど高すぎるわけではありません。60 V は、ドライバの設計に対して積極的な故障するまでのテスト条件で す。表23は、1000時間を超えるテストの後でも故障が見つからなか ったことを示しています。すべての部品は、製品のデータシートに対 するATE後のスクリーニングに合格しました。 部品がデータシートの制限をすべて満たしている場合は、これらの 制限内に致命的な故障モードがないことを示しています。上記の2番 目の潜在的な故障モードで述べたように、部品にパルスの歪みや欠 落が発生する可能性は依然としてあります。ATEに合格したデバイス のパルス波形をさらに検証するために、V_D = 60 VでT_J = 125℃レッ グの部品を、60 Vおよび125℃でテスト・セットアップに再度取り付 け、入力と出力のパルス波形を捕捉し、これを図25に示します。

図25は、1000時間以上のHTOLテストの後でも、パルス波形の劣化 が観測されなかったことを示しています。HVの出力トランジスタで は、短いパルスが原因でHTOL中に、各パルスの終わりに25 Vを超え るオーバーシュートが発生したことに注意することも重要です。これ は、最大推奨バイアスの2倍である60 Vの公称ストレスに加えて、デ バイスがV_Dに、85 V以上の繰り返し過渡過電圧ストレス(絶対最大 定格=40 Vの2倍以上)が加わったことを示唆しています。これは、V_D ストレス下でのデバイスの優れた耐久性も示しています。

この時点で、最も厳密な極端なテストは、125℃で60 VのV_Dレッグ のテスト・マトリックスによってカバーされます。ドレイン・バイアス をさらに増加させると、Lidar用途や、レーザー駆動ICの信頼性の耐 久性に適用できないHVのGaNトランジスタに異なる固有の故障メカ ニズムが発生する可能性があります。すなわち、レーザーの電源電圧 (V_D)テスト・レッグでは、故障モードは見つかりませんでした。

図25:60 VのV_Dおよび125℃で1005時間のHTOLテストを受けた後 の代表的な合格部品の出力波形(青色)。紫色の波形は、V_{IN}からの 対応する入力信号です。HTOLテスト中に、各パルスの終わりに25 V のオーバーシュートが見られたことに注意してください。

ストレス・テ スト	型番	テスト条件	故障数	全サンプル数 (サンプル数 ×ロット数)	継続時間(時間)
HTOL	EPC21601	V _{DD} = 60 V, T _J = 25℃、V _{D_DC} = 5.5 V, R _{LOAD} = 2 Ω、V _{IN} = 3.3 V _{P-P} 、 バースト周波数 = 1 kHz; 動作周波数 = 30 MHz	0	16	1005
HTOL	EPC21601	V _{DD} = 60 V、T _J = 125°C、V _{D_DC} = 5.5 V、R _{LOAD} = 2 Ω、V _{IN} = 3.3 V _{P-P} 、 バースト周波数 = 1 kHz; 動作周波数 = 30 MHz	0	16	1005

表23: それぞれ $V_D = 60$ V、 $T_J = 25$ Cおよび $T_J = 125$ CでのEPC21601のHTOLテスト結果

7.2.6 動作周波数

サンプル・サイズが小さい予備的なデバイスの特性評価では、非常に高い動作周波数でテストすると、パルス波形が歪む可能性があることが分かりました。したがって、HTOLテストのどの周波数または期間でも、パルス波形が重大な歪み、またはパルスの欠落を示し始めるかを調査するために役立ちます。

表24に示すように、2種類の高い動作周波数でのテスト・マトリックスを実施しました。48 MHzと96 MHzは、品質認定で使われる最大推奨動作 周波数30 MHzよりも、それぞれ160%、および320%高くなります。1400間以上のテストの後でも、故障は発生しませんでした。すべてのパラメー タがデータシートの制限内にあり、すべての部品がATEスクリーニング後に合格しました。

ストレス・テ スト	型番	テスト条件	故障数	全サンプル数 (サンプル数 × ロット数)	継続時間(時間)
HTOL	EPC21601	動作周波数 = 48 MHz V _{IN} = 3.3 V _{P-P} 、バースト周波数 = 1 kHz; V _{D_DC} = 30 V、T」 = 25°C、V _{D_DC} = 5.5 V、R _{LOAD} = 2 Ω	0	16	1413
HTOL	EPC21601	動作周波数 = 96 MHz V _{IN} = 3.3 V _{P-P} 、バースト周波数 = 1 kHz; V _{D_DC} = 30 V、T _J = 25°C、V _{D_DC} = 5.5 V、R _{LOAD} = 2 Ω	0	16	1413

表24:動作周波数48 MHzおよび96 MHz、V_D = 30 V、T_I = 25℃でのEPC21601のHTOLテスト結果

図26は、1413時間の48 MHzのHTOLテスト後の合格したデバイスの代表的な入力 波形 (紫色) と出力波形 (青色) を示しています。 波形の歪み やパルスの欠落は、見られませんでした。 図27は、1413時間の96 MHzのHTOLテスト後の合格したデバイスの代表的な入力波形 (紫色) と出力 波形 (青色) の図です。 波形の歪みやパルスの欠落は、見られませんでした。

これまでのところ、長期間にわたる100 MHz付近のHTOLテストで故障モードは確認されておらず、このことは、レーザー・ドライバIC製品の耐久 性をさらに実証しています。

図26:動作周波数48 MHzで1413時間のHTOLテストを実施した後 の合格したデバイスの代表的な入力波形(紫色)と出力波形(青 色)。HTOLテスト中に、各パルスの終わりに30 Vのオーバーシュート が見られたことに注意してください。

図27:動作周波数96 MHzで1413時間のHTOLテストを実施した後の合格したデバイスの代表的な入力波形(紫色)と出力波形(青色)。HTOLテスト中に、各パルスの終わりに30 Vのオーバーシュートが見られたことに注意してください。

セクション8:故障するまでテストする方法を使って、太陽光発電用途でeGaNデバイスが25年以上使えるかどうかを 正確に予測

最新のソーラー・パネルには、高い電力密度と、より長い動作寿命が強く求められています。パワー・オプティマイザや、マイクロインバータを内蔵したパネルなどの太陽光発電用途は、太陽光発電の多くのユーザーにとって、ますます一般的な傾向になっており、ここでは低電圧GaNパワー・デバイス (V_{DSMax}<200 V) が広く使われています。高電力密度を同じ形状に統合し、寿命を延ばすことが、市場での採用にとって重要な課題となっています。GaNのパワー・トランジスタと集積回路は、太陽光発電システムを、より小型、より低温、より高効率、より信頼性の高いものにするソリューションを提供します。

太陽光発電設備の一般的な要件は、25年を超える信頼性の高い運用です。故障するまでのテスト手法では、非常に加速されたテスト条件下で デバイスにストレスがかかります。この目的は、デバイスを素早く故障させ、故障解析を実施して、根本的な故障モードを特定することです。この アプローチを使うと、固有の故障メカニズムを理解し、すべてのミッション・プロファイルの下で、寿命を正確に予測する物理ベースの数学モデ ルの開発が可能になります。参考文献 [2,19~22] では、ゲート、ドレイン、熱機械的応力などに関するさまざまな寿命予測が定量化されていま す。このレポートでは、これらの物理的洞察を使って、それらを太陽光発電用途に固有の要求に適用します。

8.1 ゲートのストレス

この調査で使った代表的なディスクリートGaNデバイス (EPC2212) は、加速されたゲート・バイアス条件における故障するまでのテスト 手法が適用され、ゲートの優れた長期信頼性を示しました。この調 査で得られた複数の故障に対して故障解析を実施したところ、ゲート 金属と金属フィールド・プレートの間に一貫した故障モードが見つか りました。フェーズ14の信頼性レポート [2] の図3で強調されているよ うに、この調査では、間に挟まれた窒化シリコン誘電体がゲート故障 の原因となっています。

故障解析で見つかった固有の故障メカニズムに基づいて、すべて の観測を説明するための第一原理数学モデルを開発しました。こ のモデルを使うと、ゲートのさまざまなバイアス、温度、デューティ 比での寿命を予測できます。図28は、物理ベースの寿命方程式を EPC2212の加速した測定データに対してプロットしたものです。図28 は、EPC2212が、最大定格ゲート電圧(V_{GS} = 6 V)での継続的な直 流ゲート・バイアスの下で、35年以上の寿命にわたって予測される故 障率が1 ppm以下であることを示しています。

ゲート・バイアスを最大定格電圧以下に維持すると、eGaNデバイス は、25年を超える寿命にわたって、故障率が極めて低くなることがデ ータから分かります。この予測結果は、ゲート故障に関するEPCの現 場経験とも一致しています。

図28:EPC2212の故障するまでの時間と25℃でのV_{GS}の関 係。MTTF (およびエラー・バー) が4つの異なる電圧レッグに対して 示されています。実線は、[6] で説明されている衝突電離寿命モデル に対応します。

8.2 ドレインのストレス

GaNデバイスは、オン抵抗R_{DS(on)}が低く、チップ・サイズが小さいた め、効率が大幅に向上し、ソーラー・パネルの電力損失が減少しま す。GaNに関する一般的な懸念事項の1つは動的オン抵抗です。これ は、デバイスが高いドレイン-ソース間電圧 (V_{DS}) に曝されると、トラ ンジスタのR_{DS(on)}が増加する現象です。オン抵抗の上昇の原因となる 主な固有の故障メカニズムは、チャネル近くのトラップ状態の電子の トラップです[5]。トラップされた電荷が蓄積すると、オン状態におい て2次元電子ガス (2DEG) から電子が枯渇します。この結果、R_{DS(on)} が増加します。 ホット・エレクトロンのトラップ・メカニズムを理解することによって、 最大定格V_{DS} [2,6,21,22] 以上で、より多くのホット・エレクトロンを供 給して、この故障メカニズムを加速するために、抵抗性ハードスイッチ ング構成の回路を開発し、実装しました。この開発による特性評価 テストの結果を使って、すべてのバイアスおよび温度のストレス条件 下で、eGaN FETの動的R_{DS(on)}効果を記述する第一原理モデルを開発 しました。

フライバックは、太陽光発電用途のマイクロインバータに最もよく採用される回路構成の1つです。1次側のトランジスタを選択する場合、 発生するドレイン電圧は主に、(1)バス電圧、(2)フライバック電圧、 (3)設計に由来するインダクタンスによるスパーク雑音の3つの発生 源で構成されます。マイクロインバータの標準的なバス電圧は、太陽 光発電用途では60Vです。フライバック電圧は、システムの出力電圧 と変圧器の巻数比の積によって決まり、通常はバス電圧よりも低くな ります。スパーク雑音とディレーティング(定格低減)にある程度の マージンを追加するために、このような用途で使う太陽光発電のユー ザーは、170Vの最大V_{DS}定格を求めることが多いようです。

EPC2059は、170 Vの最大V_{DS}定格の製品で、太陽光発電用途にお けるマイクロインバータの一般要件を満たしています。図29は、パッ ケージ温度を80℃に調整しながら、136 V (ドレイン・バイアスの最 大定格170 Vの80%) にして、連続ハードスイッチング下で動作させ たEPC2059を示しています。ここで、太陽光発電用途に対して80℃ が公称動作温度と考えられます。図29に示すように、測定データと、 対応するモデルは、35年間の連続ハードスイッチングによるR_{DS(on)} の増加が約10%になると予測しています。この外挿は、以前の文献 [2,6,21,22]で詳細に説明されている対数(時間)増加特性に基づいて います。

図29:35年間の連続ハードスイッチング動作における定格170 Vの デバイスであるEPC2059の予測したR_{DS(on)}シフトは、約10%である と推定されます。

太陽光発電のもう1つの一般的なオプションは、マイクロインバータの 1次側(通常はフルブリッジ)でDC-DCコンバータを使うことです。こ の回路構成は、しばしばパワー・オプティマイザで使われ、その優れ た効率によって、太陽光発電事業者による採用が増えています。この 用途には、特に100 V定格のEPC2218、EPC2053、EPC2302などの GaNデバイスが適しています。

図30は、複数のEPC2218 (eGaNトランジスタ) が、周囲温度25℃において、最大定格電圧である100 Vのバイアスでの連続抵抗性ハードスイッチング動作下で、1000時間以上テストされたことを示しています。

結論は次の2つです:

- 35年間にわたる連続ハードスイッチングによるEPC2218の予測したR_{DS(on)}の増加は、約10%になると推定されます。
- 2. 1150時間のテストは、35年後の予測したR_{DS(on})において、短時間 テスト (5時間)と10%以内で一致しています。寿命予測の変動は、 周囲の小さな (そしてランダムな)温度変動によって引き起こされ ます。この結果は、R_{DS(on})動作の長期寿命を正確に予測するために 短期データを使えるという考えに信憑性を与えます。

図30:周囲温度および100 Vのバイアスで1000時間以上の連続抵 抗性ハードスイッチング動作させたEPC2218 (eGaN FET) の2個 のサンプルに対する長期の動的R_{DS(on)}。短期の適合でも長期の適 合と同様の予測になることに注意してください。35年間の予測で は、±10%の小さなランダムな差が生じます。

したがって、eGaN デバイスは、25年以上の寿命に対して、動的オン 抵抗の良好な耐久性を示します。

8.3 熱機械的応力

熱機械的信頼性も、太陽光発電用途で特に関心のあるもう1つの重 要な領域です。ソーラー・パネルは、屋外に設置されており、1日中、 周囲の温度が大きく変化します。したがって、ソーラー・パネルのプ リント回路基板に実装されたデバイスは、25年間の継続的な周囲 温度の変化に耐えられなければなりません。同様の故障するまで のテスト手法を使って、EPC2218の車載品質品であるEPC2218Aの 基板レベルの熱機械的信頼性を調査しました。上記で説明したよう に、EPC2218A、または同等の商用品質の100 V定格のデバイスは、太 陽光発電用途のパワー・オプティマイザで使う理想的な候補です。

アンダーフィル材の有無にかかわらず、温度サイクル・ストレス条件 の3つの異なる組み合わせを調査しました。温度サイクル1(TC1): -40°C~125°C、および温度サイクル2(TC2):-40°C~105°Cの2つ の温度サイクル範囲をテストしました。-40°C~125°C(TC1)の温 度範囲で、アンダーフィル材を使ったときと、使わないときの2つの場 合を比べました。選択したアンダーフィル材は、以前の調査で優れた 性能を示したヘンケルのLOCTITE(型番:ECCOBOND-UF 1173)で す [5]。適切なアンダーフィル材を検索するための詳細な選択ガイド ラインについては、[6]で説明されています。すべての場合において、 部品は、SAC305はんだペーストと水溶性フラックスを使った2層の 1.6 mm厚のFR4基板で構成されるDUTカードまたはクーポンに実装 しました。アンダーフィルしたデバイスはすべて、アンダーフィルを塗 布する前にプラズマ・クリーン・プロセスを受けました。

この調査では、業界標準(JESD22-A108F [27])、および他のユーザ ーの仕様に従いました。EPC2218Aの88個のデバイスのグループが 各レッグでテストされ、3つのテスト・レッグのすべてに対して、2つの 極端な温度で、同じランプ・レートと滞留時間にしました。各温度サ イクル間隔後に電気的スクリーニングを実施し、データシートの制 限を超えているところを故障の判定に使いました。電気的故障の主 な特徴は、R_{DS(on)}の増加ですが、デバイスは依然として、通常のトラ ンジスタとして機能しています。電気的テストの不具合をさらに調べ るために、物理的な断面作成とSEM(走査型電子顕微鏡)検査を実 施しました。はんだ接合部の亀裂は、分析されたすべての故障を通 じて単一の故障モードであることが分かりました

図31: EPC2218Aの温度サイクル結果のワイブル・プロット

フェーズ15テスト

図31は、温度サイクル結果の故障のワイブル分布を示しています。故障の分布は、最大最尤推定 (MLE) [28] を利用して、温度サイクルのレッグごとに2パラメータのワイブル分布を使って分析しました。適合度はグラフの実線で示されています。

アンダーフィル材なしのTC1 (−40℃~125℃) は、1600サイクルで累 積故障率が50%以上に達し、物理的故障解析によって、はんだ接合 部の亀裂が、さまざまな読み取り点におけるすべての故障の単一故障 モードであることが分かりました。

図31に示すように、アンダーフィル材なしのTC2 (-40°C~105°C)の レッグは、1800サイクル終了時に約15%の故障率を示しました。TC2 からTC1のテスト条件で強い加速が見られました。いずれの場合のデ バイスも、アンダーフィル材は使っていません。

2つの主な故障メカニズムが、大幅な加速による可能性があります。 まず、2つのテスト条件のΔTの違いは、はんだ疲労故障メカニズムの 加速につながります。これは、コフィン・マンソン則でうまく説明さ れ、JEDEC [29] およびAEC [30] の規格で広く採用されています。ただ し、この故障メカニズムだけでは、観測された加速を説明するために は不十分です。ここでは、2つ目のメカニズムであるはんだ接合部の クリープ故障メカニズムを紹介します。クリープは主に、極度の高温 での滞留期間中の影響であると考えられています [31-35]。このクリ ープ・メカニズムは、次の寿命モデルの開発で説明する活性化エネル ギーによって支配されます。

ヘンケルのアンダーフィルを使ったTC1 (-40°C~125°C)を1600サイ クル実施した後、電気的テスト後の絶対R_{DS(on)}値およびR_{DS(on)}シフト に異常値のデバイスは、見つかりませんでした。調べたすべてのパラ メータは、すべての温度サイクル間隔にわたって非常に狭い分布を示 しました。物理的断面の作成は、1600サイクルで合格したデバイスか らランダムに選択した部品に対して実施しましたが、はんだ接合部の 亀裂は観測されませんでした。これは、適切なアンダーフィル材を適 用すると、チップスケール・パッケージのデバイスの熱機械的能力を 大幅に向上できることを示しています。したがって、アンダーフィルあ りのTC1のレッグに対するワイブル適合の線は、現在のテスト結果に 基づく信頼レベルの下限にすぎません。テストは継続しており、故障 が特定されるとプロットが更新されます。 基板レベルの温度サイクルに関係する主な故障メカニズムを調査して理解することによって、Norris-Landzbergモデル [31] を使って、より一般的な寿命モデルが開発されました。

$$N = A \cdot f^{-\alpha} \cdot \Delta T^{-\beta} \cdot \exp\left(\frac{E_a}{kT_{Max}}\right)$$

 \vec{z} 6

ここで、Nは故障するまでのサイクル数、fはサイクル周波数、αはサイクル周波数指数であり、この周波数項は使用頻度を表します。この 調査では、サイクル頻度は1日当たりのサイクルの総数を数えること によって決定され、サイクル頻度指数αは-1/3として広く使われてい ます[32~36]。 Δ Tは1サイクルの温度変化範囲、 β は温度範囲指数で す。この項は、 Δ Tの影響を決定するために使われる前述のよく知ら れた コフィン・マンソン則です [29~31]。温度範囲の指数は通常、約 2です。この調査ではSAC305はんだが使われているため、寿命モデ ルの指数βは2.3です[28~34]。最後の変数は、各サイクルの最高温 度 T_{Max} でのクリープ故障メカニズムに焦点を当てたアレニウス項で す。ここで、Eaは活性化エネルギー、kはボルツマン定数、 T_{Max} は高 温滞留時の最高温度で、単位はケルビン (°K)です。

活性化エネルギーを見つけることは、非常に重要であり、寿命モデルの開発に向けた最後のステップです。表25にリストしたアンダーフィル材を使わない場合のTC1とTC2の平均故障時間(MTTF)を比較することによって、加速係数を決定しました。この加速係数に基づいて、*T_{Max}*での活性化エネルギー(*Ea*)は0.2 eVと計算されました。

Norris-Landzbergモデルを使って推定した寿命曲線を、T_{Max}が 125℃と仮定して図32にプロットしました。これは、おそらくクリープ 故障メカニズムの最悪のシナリオです。9125サイクルの水平の黒色 の破線は、1日当たり1つの熱サイクルを仮定した場合の25年間の連 続運転期間を表しています。図32は、高温から低温、またはその逆の 60℃の一定の温度変動下で、25年間連続動作した後、R_{DS(on)}の値の 増加によって、アンダーフィル材を使ったEPC2218Aのわずか0.1%が データシートの制限を満たさないことを示しています。故障率が1% であれば、76℃の一定のΔTに曝されたとき、デバイスの99%は25年 間の連続動作に耐えることができます。アンダーフィル材がない場合 でさえも、部品の99%は25年間の連続動作で、約50℃固定のΔTに耐 えられるはずです。

TC条件	T _{min} (°C)	T _{max} (°C)	ΔT (°C)	周波数(1日当たりのサイクル数)	スロープのパラ メータ	特性のワイブル寿命	MTTF (サイクル数)
TC1 アンダーフィルなし	-40	125	165	36	4.5	1649	1505
TC1 アンダーフィルなし	-40	105	145	48	4.5	2663	2430
TC1 アンダーフィルあり	-40	125	165	36	4.5	5410	4442 (1600サイクルで故障なし、下限信頼 レベル)

表25:ワイブル・プロットによって決定された温度サイクル・プロファイルと主要パラメータ

フェーズ15<u>テスト</u>

図32:Norris-Landzbergモデルを使ったΔTに対するEPC2218Aの 寿命予測曲線

実際のアプリケーションでは、ソーラー・パネルは、変化する周囲温 度に曝され、温度変化の量は、季節や場所によって大きく変わりま す。この結果、熱機械的応力のより一般的な寿命モデルが、25年間 の寿命にわたるさまざまなミッション・プロファイルを説明できるこ とが保証されます。式7に示すように、1年の異なる季節におけるさま ざまなΔTを考慮して、経験的な数学モデルを以下に開発しました。

$$\frac{1}{N_{Total}} = \frac{a}{N_{\Delta T_a}} + \frac{b}{N_{\Delta T_b}} + \dots + \frac{i}{N_{\Delta T_i}}$$

ここで、 N_{Total} はサイクル数から計算された合計寿命であり、 $N_{\Delta Ta}$ は ΔT_a の条件における故障するまでのサイクル数に対応し、aはデバイ スが ΔT_a の条件下で動作していた時間の割合、 $N_{\Delta Tb}$ は、条件 ΔT_b に 対する故障するまでのサイクル数に対応します。bはデバイスが ΔT_b の下で動作していた時間の割合、 $N_{\Delta Ti}$ は、条件 ΔT_i に対する故障する までのサイクル数に対応し、iはデバイスが ΔT_i の下で動作していた時 間の割合です。

このモデルを開発するときに、はんだ接合部の寿命に支配的な要因は主に3つあります。それぞれがモデルに含まれています。

- 1. 各ミッション・プロファイルの期間を分離する必要があります。 こ の影響は、式7の各項 (*a,b,...,i*など)の分子の分数係数によって説 明されます。
- 2. 各ミッション・プロファイルにおける温度変化 (Δ T); この項は、式 6のNorris-Landzbergモデルに対応し、図32にプロットしていま す。はんだ接合部は、デバイスが最大の Δ Tに曝される期間中に、最 も大きな応力を受けます。これは、故障するまでのサイクル数が最 短になることを意味します。デバイス全体の寿命は、基本的に最も 応力が大きい期間に支配されます。この影響は、分母に故障する までのサイクル数の期間 ($N_{\Delta T}$) を代入して、それらを合計すること で対処できます。

3. 各サイクルの最高温度の極値、またはベースライン温度;例えば、 はんだ接合部は、冬と夏で同じ Δ Tが与えられた場合でも、異なる 応力レベルに曝される可能性があります。この影響は、式6のアレ ニウス項に含まれており、最終的には分母の故障するまでのサイ クル数の項 (N_{AT}) に反映されます。

次に、デバイスの寿命全体にわたって、異なるミッション・プロファイ ルを適用することによって、式7を使って寿命を推定するために実際 の例を調べました。この計算では、アンダーフィルのあるEPC2218A の故障率0.1%の寿命プロットを使いました。

ソーラー・パネルは、米国アリゾナ州フェニックスに設置されると仮定 すると、太陽に長時間曝される気候に太陽光発電は適していますが、 時間の経過と共に極端な温度変化があるため、非常に厳しい熱機械 的な要件も要求されます。ここで、2023年の予測を使うと[37]、1月か ら4月までの平均ΔTは14.5℃(その期間の1/3)に、5月から8月までの 平均ΔTは20℃(その期間の1/3)に、9月から12月までのΔTは14.75℃(その時間の1/3)になると予測されます。対応する故障するまでのサイ クル数を表26に示します。故障率0.1%の場合、合計寿命は1万5433サ イクルと計算されます。1サイクルが1日に相当すると考えると、温度サ イクル・ストレスによる故障率が0.1%の場合、寿命は42年と推定され ます。

アンダーフィ	N _{Total}	$N_{\Delta Ta}$ $(\Delta T_a = 44.5^{\circ}\text{C})$	$N_{\Delta T b}$ ($\Delta T_b = 50^{\circ}$ C)	$N_{\Delta Tc}$ ($\Delta T_c = 44.75^{\circ}$ C)
ルありで故障 率0.1%までの サイクル数	15,433	17,742	13,570	15,086

表26:実際のアプリケーションにおける各ミッション・プロファイル に対するアンダーフィルありのときの故障率0.1%までのサイクル数

上記の議論に基づいて、実際の太陽光発電用途に、アンダーフィルが あるEPCの100 V定格の第5世代製品のファミリーを利用すると、熱サ イクルの信頼性リスクが大幅に軽減され、期待される25年を大幅に 超える優れた寿命が得られます。

8.4 宇宙線

ソーラー・パネルは屋外に設置されるため、ソーラー・インバータ用 途に使われるデバイスは、宇宙からの宇宙線が発生する高エネルギ ー粒子の影響を受ける可能性が高くなります。地上の中性子は、Si MOSFETやSiCデバイスなどのパワー・デバイスに壊滅的な故障を引 き起こす最も致命的な粒子であることが分かっています [38~40]。調 査によれば、MOSFETおよびSiCデバイスの故障率は通常、時間的に は一定ですが、電圧と高度に大きく依存し、温度には弱く依存します [38~40]。

図33は、1 cm²当たり最大4×10¹⁵の線量での中性子放射線衝撃下 における定格100 Vの GaNデバイスのテスト結果です。ここで、パラ メータの平均値の変化は、最小であることが分かりました。流束量 4×10¹⁵ n-cm²の生存率は、SiCベース [41] と Siベース [42] の両方の パワー・デバイスについて報告されている値を大幅に上回りました。

中性子衝撃を受けたデバイスの主な故障メカニズムは、高エネルギ ー中性子が結晶格子内の原子に散乱するための変位損傷です [43]。 そして、格子欠陥が残ります。したがって、図33の結果は、GaN結晶お よびデバイス構造全体に対する中性子の影響が重要ではないことを 示しています。

中性子放射線下でGaNが優れた性能を発揮する理由は、GaNがシリ コンに比べて、変位エネルギーのしきい値が、はるかに大きいからで す。結晶の変位エネルギーは、結晶要素の結合強度に比例します。 図34に示すように、ガリウムと窒素の間の結合エネルギーは、シリコ ンのパワーMOSFETのシリコン原子間の結合エネルギーよりも非常 に大きくなっています [44]。

図34:[44] から引用したさまざまな材料の変位エネルギーのしきい 値と格子定数の逆数のグラフ。

図33:100 V定格のeGaNデバイス (FBG10N30は、EPC2001Cと同 等の耐放射線版のディスクリートeGaNデバイスを使用) への最大 4×10¹⁵ cm²の線量における中性子放射線の影響。

セクション9:DC-DCコンバータ

このセクションでは、セクション5の動的R_{DS(on)}モデルを、一般的な DC-DCコンバータの使用例に適用します: (i) 同期整流器と、(ii) ハ イサイドFETとローサイドFETの両方を考慮したバック・コンバータで す。これらの計算では、2段階のシミュレーション・プロセスを採用し ました。

最初のステップでは、実際のレイアウトで発生する主な寄生インダク タンスの影響など、アプリケーション回路の現実的なSPICEモデルを 開発しました。これらの寄生成分は、リンギングや電圧オーバーシュ ートに一次効果を与えるため、FET自体の動的R_{DS(on})に影響を与える 可能性があります。寄生インダクタンスは、標準的なものから極端な もの(非常に稚拙なプリント回路基板のレイアウトを表す)まで、変 えました。SPICEシミュレーションでは、1つのスイッチング・サイクル 全体にわたって、細かい時間サンプリングを行い、FET内のチャネル 電流とドレイン-ソース間電圧を捕捉しました。

2番目のステップでは、これらの1サイクルの電流-電圧軌跡をホット・ エレクトロンのトラップ・モデル (MATLABで実装) にインポートしま した。このモデルを使って、最初のスイッチング・サイクルで発生す る電荷トラップを計算し、どの時点(例えば、オン時またはオフ時の 遷移) で、最も多くの充電が発生するかを決定しました。さらに、10 年間の連続動作にわたって発生する累積電荷トラップを決めるた めに、数兆を超える同一のスイッチング・サイクルを積分しました。 瞬間的なトラップ率は、累積トラップ電荷に(非線形に)依存するた め、サイクルごとの充電量は一定ではなく、FETがスイッチングする につれて時間の経過と共に、急速に自己消滅します。充電は時間と 共に飽和するだけでなく、スイッチング波形内の最も害を及ぼす領 域もデバイスの動作につれて変わる可能性があります。例えば、バッ ク・コンバータのハードスイッチのハイサイドFETの場合です(後で詳 しく説明します)。最初は、電荷トラップは主に、オン時の遷移のと きの大電流/中電圧の軌跡中に発生します。ただし、長期間の動作 の後、このプロセスは完全に停止し、それ以降の充電はすべて、オフ 時の遷移のときの低電流/高電圧の軌跡中にのみ発生します。

これらの計算によって、以下の結論が裏付けられます:

48 V入力、12 V出力のLLC同期整流器の場合:

- これらのゼロ電圧スイッチング (ZVS) 条件下では、動的R_{DS(on)} (dR_{DS(on}) は一般に、非常に安定しています。
- ・ユーザーは、12 V出力と24 Vのバス電圧での保守的な40 Vのトランジスタの代わりに30 Vのトランジスタの使用を検討できます。

最新世代の100 VのGaNデバイスを使ったバック・コンバータ (ソフト スイッチング) のローサイドFETの場合:

- オン時の遷移のとき、80 Vのバス電圧で50 Vのオーバーシュートが あったとしても、良好なdR_{DS(on)}。
- ・170 Vまでの極端なオーバーシュートは、かなりのdR_{DS(on)}を引き起 こす可能性があります。

最新世代の100 VのGaN デバイスを使ったバック・コンバータ (ハード スイッチング) のハイサイドFETの場合:

- ・40 V (ピーク電圧130 V)の中程度のオーバーシュートでは主に、オン時の遷移中に電荷トラップが発生し、長期にわたるdR_{DS(on)}は問題ありません。
- ・90 V (ピーク電圧170 V) の極端なオーバーシュートでは、電荷トラップはオフ時の遷移後の高電圧リンギングによって支配され、長期的なdR_{DS(on)}が懸念される可能性があります。

9.1 電流依存のホット・エレクトロンのトラップ・モデル

個々のスイッチング・サイクル内での動的電荷トラップをシミュレーシ ョンするために、前述した基本的な支配微分方程式に対する2つの単 純な一般化を行いました。1つは、瞬間的なトラップ率がチャネル電流 (1) に線形に比例すると仮定したことです。デバイス物理の観点から 見ると、この合理的な仮定は、チャネル電子が独立して(相互作用せ ずに)動作し、それぞれが表面障壁を乗り越えてトラップされるため に十分な運動エネルギーを持つ「幸運な」電子になる確率が等しいと 言っているのと同じです。2番目の一般化は、時間の積分に関連しま す。以前の分析では、電流と電圧は時間の経過と共にに変化しない と仮定していました。これによって、表面電荷対時間の閉じた形式の 解析解を得ることができました。ここで検討するよりも一般的な事例 では、スイッチング・サイクルの軌跡全体にわたって電流と電圧の両 方が時間と共に変化することが許されています。結果として、閉じた 形式の解は存在せず、明確に時間積分する必要があり、以下の式8に 示す一般的な解が得られます。スイッチング波形は複雑なので、この 積分は数値的に実行しなければなりません。

式8は、GaNトランジスタにおける動的R_{DS(on)}の理論的理解における 重要な進歩を表しています。研究者は、電流と電圧の両方がこれらの デバイス内でのホット・エレクトロンのトラップの主な牽引役であるこ とを以前から知っていました。しかし、それらの効果を数学的に組み 合わせて累積トラップ電荷と動的R_{DS(on)}を計算する方法は、分かって いません。式8に見られるように、電流の効果は線形ですが、V_{DS}の効 果(電界項Fによる)は、非常に非線形で、すでに蓄積されているトラ ップ電荷Q_sに依存します。このため、FETがより長い時間スケールで 切り替わり、Q_sが上昇すると、さらなるトラップに寄与できるものは、 最も高い電界Fと最も高いV_{DS}の軌跡から生じる最もホットな電子だ けになります。この効果は、以降の説明で実際の使用例を分析するに つれて明らかになるでしょう

次のステップでは、実際の例を検討します。最初の例では、1 MHzで 動作する48 V入力、12 V出力のLLC同期整流器を使って、2次側トラ ンジスタのR_{DS(on)}の劣化を評価しました。

9.2 48 V入力、12 V出力のLLC同期整流器

この回路のSPICEモデルは、デモ回路EPC9149 [45] に基づいています。回路とモデルのパラメータを図35に示します。多かれ少なかれオーバー シュートのあるさまざまな波形を生成するために、変圧器の各端子の出力における漏れインダクタンスL1、L2、L3、L4を50 pHから150 pHま で変化させました。図35 (右図) に見られるように、インダクタンス値が高くなると、より大きなリンギングとオーバーシュートが発生します。

図35:デモ・ボードEPC9149に基づく1 MHzで動作する48 V入力、12 V出力のLLC同期整流器の回路図とSPICEモデルのパラメータ。

オーバーシュートの大小を変数として、40 V定格 (事例1と2)または30 V定格 (事例3と4)のGaNデバイスを使って、4つの異なる事例を調査しました。すべての場合において、eGaN FETには、ZVSのオン時と、ハードスイッチによるオフ時の状況を加えます。最初のサイクルから1000万サイクル目までのスイッチング波形全体のシーケンスについて、電圧、電流、dR_{DS(on)}を計算しました。図36は、1000万サイクル後の計算された電流波形と電圧波形です。各サイクルを通して、トラップされた電荷の量Q_Sを計算し、その前のすべてのサイクルと合計しました。

図36:L1~L4のインダクタンス値を50 pHから150 pHに増加させることによって、事例2と事例4でオーバーシュートが大きくなりました。

フェーズ15テスト

9.2.1 40 VのGaNトランジスタ: 事例1と2

図37に、40 V品を使った計算結果を10年 で終了するlog(t)スケール上にプロットし ました。いずれの事例も、トラップされ た電荷の測定可能な蓄積はなく、したが ってR_{DS(on)}の測定可能な劣化はありませ ん。次の2つの事例では、より低いR_{DS(on)} の30 VのGaN FETを使いました。通常、低 電圧部品は40 Vの部品より高効率です。

図37:40 VのEPC2024デバイスの時間経過に伴うトラップ電荷Q_S(左の上と下の図)、時間経過に伴う正 規化したR_{DS(on)}(右の上と下の図)。事例1ではL1~L4 = 50 pHを使用、事例2ではL1~L4 = 150 pHを 使用。

図38:30 VのEPC2023デバイスの時間経過に伴うトラップ電荷Q_s(左の上と下の図)、時間経過に伴う正規 化したR_{DS(on})(右の上と下の図)。事例3ではL1~L4 = 50 pHを使用、事例4ではL1~L4 = 150 pHを使用。

9.2.2 30 VのGaNトランジスタ:事 例3と4

図38に、30 VのEPC2024 (GaNトランジ スタ)を使用したことを除き、事例1と2で 使ったものと同じ回路で、10年間で終わ るlog(t)スケールでプロットした計算結果 を示します。最も極端な事例で、R_{DS(on)}の 劣化は最小の約5%です。結論として、よ り極端なオーバーシュートがあったとして も、30 Vのデバイスは、この回路で安全に 使えるということです。

9.3 48 V入力、12 V出力のバック・コンバータ

次の例は、500 kHzの電流連続モードで動作する48 V入力、12 V出力のバック・コンバータの例です。SPICEモデルの回路図を図39に示します。オーバーシュートの量を調整するためにインダクタンスL5を変化させました。最初にローサイドの同期整流FETを調べ、次にハイサイドの制御FETを調べます。いずれのデバイスも100 VのEPC2045 (GaN トランジスタ)です。

9.3.1 ローサイドGaNトランジスタ

図40に、さまざまな寄生インダクタンスを持つコンバータのローサイド同期整流FETの電圧波形と電流波形を示します。いずれの場合も、 ローサイド・トランジスタは、ソフトスイッチング過渡現象が生じ、インダクタンスが増加するにつれてオフ時の電圧オーバーシュートが増 加します。図40に示すように、L5を変化させることによって、80 Vバス上のオーバーシュートは、ローサイド・トランジスタで50 Vから、ピー クは90 V超になりました。170 Vピークのオーバーシュートは、うまく設計されたシステムで発生するものよりも、はるかに大きいことに注意 してください。

図39:デモ・ボードEPC9078 [46] に基づく500 kHzで動作する48 V入力、12 V出力のバック・コンバータ。異なるオーバーシュート量を生成するため に、L5は0.2 nHから1.2 nHまで変えました。

図40:500 kHzで動作する48 V入力、12 V出力のバック・コンバータ。さまざまなオーバーシュート量を生成するために、L5を0.2 nHから1.2 nHまで変化 させました。0.2 nHでは、ローサイド・デバイスで80 VのDCバスよりも50 V大きいピーク オーバーシュートが発生しました(左図)。一方、1.2 nHのイン ダクタンスでは90 Vのピーク・オーバーシュートが発生しました。

フェーズ15テスト

図41は、最初のサイクルでトラップされた電荷量と1000万回のサイクルでトラップされた累積電荷量を比較したものです(縦軸の5桁の変化と スケールの高分解能に注意してください)。赤色の楕円は、1サイクルから1000万サイクルの間のある時点で特性が変化したことを示していま す。実際、これは電子がトラップされるたびに障壁の高さがわずかに増加することによって引き起こされます。これによって、トラップされた最も 高いエネルギーの電子以外のすべての電子がトラップされにくくなります。この領域には、いくらかのリンギングが含まれていますが、トラップさ れた電子は、デバイスが名目上オフ状態にあるときの高いV_{DS}と組み合わされた非常に小さな漏れ電流によるものです。

図41:最初のサイクルでトラップされた電荷量Qsと1000万サイクルでトラップされた累積電荷量との比較。

これらのデータは、図42のグラフに変換できます。上図の2つは、0.2 nHのインダクタンスの事例の時間経過に伴うトラップ電荷Q_S(左図)と正規化したR_{DS(on)}(右図)です。下のグラフは、1.2 nHの事例です。130 VピークのリンギングではR_{DS(on)}の増加は最小限ですが、ピーク電圧が170 Vに達すると、R_{DS(on)}は、より顕著に変化します。

図42:上の2つのグラフは、0.2 nHのインダクタンスの事例の時間経過に伴うトラップ電荷Q_S(左図)と正規化したR_{DS(on)}(右図)。下の2つのグ ラフは、1.2 nHの事例です。

フェーズ15テスト

9.3.2 ハイサイドGaNトランジスタ

図43の左側は、図39のバック・コンバータ内 のハイサイド制御FETの電流波形と電圧波 形です。今回は、eGaN FETがオン時とオフ 時にハードスイッチングで遷移します。L5の インダクタンスが同じ値(1.2 nH)の場合、 ハイサイド・デバイスのオーバーシュートは、 わずか約40 Vであり、ピーク・オーバーシ ュート電圧は120 Vになります。右側は、最 初のサイクルでトラップされた電荷(上図) と、1000万サイクル(下図)との比較をグラ フに示しています。縦軸の変化に注目する と、ローサイド・トランジスタと同様に、後の サイクルでトラップされた電荷量が増加する につれて特性が変化します。ローサイド・デ バイスでは見られなかった1.3 µsのオフ時の サイクル中に現れる電荷の降起があります。 このサイクルのこの部分では、オフ時の電圧 低下中にハイサイド・トランジスタに大きな 電流が流れます。したがって、トラップに利 用できる高エネルギー電子が大量に供給さ れます。

インダクタンスが1.2 nHのハイサイド・デバ イスのピーク過電圧が120 Vに減少してい ることから予想されるように、dR_{DS(on)}の最 小の変化は、図44に示すように、両方とも ほぼ同じピーク・オーバーシュート電圧なの で、0.2 nHの事例の図42と同様になります。

物理ベースのモデルによって、任意の与えら れたスイッチング軌跡の電荷トラップを計算 できます。シミュレーションによると、電流 の影響は小さく、電圧の影響は、はるかに大 きいことが分かります。12 V出力のLLC同期 整流器では、変圧器の各レッグの漏れイン ダクタンスを50 pHから150 pHまで変化さ せると、異なるオーバーシュート量を生じま したが、30 V定格のデバイスを使っている場 合でさえも、有意な量のdR_{DS(on)}は発生しま せんでした。 バック・コンバータでは、 ローサ イドとハイサイドの両方のトランジスタで、 定格100 Vのデバイスにおいて、最大130 Vの ピーク・オーバーシュートでR_{DS(on)}の変化は 最小限でした。170 Vのピーク過電圧におい て、この100 VのデバイスのR_{DS(on)}は、10年間 で50%しか劣化しませんでした。

図43:(左図)図39のバック・コンバータのハイサイド制御FETの電流波形と電圧波形。(右図)ト ラップされた電荷の最初のサイクル(上図)と、1000万サイクル(下図)との比較。

図44:時間経過に伴うトラップされた電荷Q_S (上図)と、正規化したR_{DS(on)} (下図)。横軸の目 盛りは、右端が10年です。

9.4 現実世界の重要な使用事例へのモデルの適用のまとめ

物理ベースのモデルによって、任意の与えられたスイッチング軌跡の電荷トラップを計算できます。シミュレーションによると、電流の影響は小さく、電圧の影響が、はるかに大きいことが分かります。12 V出力のLLC同期整流器では、変圧器の各レッグの漏れインダクタン スを50 pHから150 pHまで変化させると、異なるオーバーシュート量が生じましたが、30 V定格のデバイスを使ったときでさえ、測定した R_{DS(on)}の増加は、有意ではありませんでした。

バック・コンバータでは、ローサイドとハイサイドの両方のトランジスタで、定格100 Vのデバイスに対して、最大130 Vのピーク・オーバー シュートまでR_{DS(on)}の変化は最小限でした。170 Vのピーク過電圧において、この100 VのデバイスのR_{DS(on)}は、10年間で50%しか劣化し ませんでした。

10. まとめ

GaNデバイスは2010年から量産されており、自動運転車用Lidar、屋根の上のソーラー・パネル、車のヘッドランプ、サーバー用DC-DCコン バータ、人工衛星など、実験室でのテストとユーザーのアプリケーションの両方で非常に高い信頼性が実証されています。故障するまで のテストでは、あらゆるストレス条件における本質的な故障メカニズムとその動作を分離できます。このテストから得られた情報は、実 際のさまざまなミッション・プロファイルの下で、デバイスの寿命を予測するために自信を持って使うことができます。

参考文献:

- [1] Handbook for Robustness Validation of Semiconductor Devices in Automotive Applications, Third edition: May 2015, Editor: ZVEI Robustness Validation Working Group, Eds. Published by ZVEI – Zentralverband Elektrotechnik – und Elektronikindustrie e.V. [Online]. Available: https://www.zvei.org/fileadmin/ user_upload/Presse_und_Medien/Publikationen/2015/mai/Handbook_for_Robustness_Validation_of_Semi- conductor_Devices_in_Automotive_ Applications_3rd_edition_/Robustness-Valida- tion-Semiconductor-2015.pdf
- [2] Pozo, A., Zhang, S., Strittmatter, R., 「EPC GaNトランジスタのアプリケーションの準備:フェーズ14テスト」、EPC Corp、米国カリフォルニア州エルセグ ンド、信頼性レポート。[オンライン]入手可能: https://epc-co.com/epc/jp/設計サポート/egan-fetの信頼性/reliabilityreportphase14
- [3] Spirito, P., Breglio, G., d'Alessandro, V., and Rinaldi, N., "Analytical model for thermal instability of low voltage power MOS and S.O.A. in pulse operation," 14th International Symposium on Power Semiconductor Devices & ICS; Santa Fe, NM; 4–7 June 2002; pp. 269–272.
- [4] Ooi, T. L. W., et al., "Mean multiplication gain and excess noise factor of GaN and Al0.45Ga0.55N avalanche photodiodes," Eur. Phys. J. Appl. Phys. 92, 10301, 2020.
- [5] Efficient Power Conversion Corporation, "EPC2045 Enhancement-mode power transistor," EPC2045 datasheet. [Online]. Available: https://epc-co.com/epc/ Portals/0/epc/documents/datasheets/epc2045_datasheet.pdf
- [6] Lidow, A, GaN Power Devices and Applications, El Segundo, CA: PCP Press, 2021
- [7] Brazzini, T., et al., "Mechanism of hot electron electroluminescence in GaN-based transistors," J. Phys. D: Appl. Phys. 49, 435101, 2016.
- [8] Mishra, S., "Fault current limiting and protection circuit for power electronics used in a modular converter," M.S. thesis, University of Tennessee, Knoxville, TN, 2008. [Online]. Available: https://trace.tennessee.edu/utk_gradthes/468
- [9] Glaser, J., "An introduction to Lidar: A look at future developments," IEEE Power Electronics Magazine, March 2017
- [10] Pozo, A., Zhang, S., Strittmatter, R., 「EPC GaNトランジスタのアプリケーションの準備:フェーズ7テスト」、EPC Corp.、米国カリフォルニア州エルセグンド、信頼性レポート。[オンライン]入手可能:https://epc-co.com/epc/jp/設計サポート/egan-fetの信頼性/reliabilityreportphase7
- [11] Strittmatter, R., "GaN reliability for automotive: testing beyond AEC-Q," IEEE APEC Conf., PSMA Industry Session, Anaheim, 2019.
- [12] Department of Defense Test Method Standard: Mechanical Tests Die Shear Strength. Mil-Std-883e (Method 2019), May 3, 2018. [Online]. Available: https://landandmaritimeapps.dla.mil/Downloads/MilSpec/Docs/MIL-STD-883/std883.pdf
- [13] AEC-Q200 REV D: Stress Test Qualification for Passive Components (base document), Automotive Electronics Council, June 1, 2010, [Online]. Available: www.aecouncil.com
- [14] AEC-Q200-005 Rev A: Board Flex Test, Automotive Electronics Council, June 1, 2010, [Online]. Available: www.aecouncil.com
- [15] Jakubiec, C.、Strittmatter, R.、Zhou, C.、「EPC GaNトランジスタのアプリケーションの準備:フェーズ9テスト」、EPC Corp、米国カリフォルニア州エルセ グンド、信頼性レポート。[オンライン]入手可能:https://epc-co.com/epc/jp/設計サポート/egan-fetの信頼性/reliabilityreportphase9
- [16] ANSI/ESDA/JEDEC JS-002-2014: Charged Device Model (CDM) Device Level, [Online]. Available: https://www.jedec.org/standards-documents/docs/js002-2014
- [17] Pozo, A., Zhang, S., Strittmatter, R., 「EPC GaNトランジスタのアプリケーションの準備:フェーズ10テスト」、EPC Corp.、米国カリフォルニア州エルセグ ンド、信頼性レポート。[オンライン]入手可能:https://epc-co.com/epc/jp/設計サポート/egan-fetの信頼性/reliabilityreportphase10

フェーズ15テスト

参考文献(続き):

- [18] Pozo, A.、Zhang, S.、Strittmatter, R.、「EPC GaNトランジスタのアプリケーションの準備:フェーズ12テスト」、EPC Corp、米国カリフォルニア州エルセグンド、信頼性レポート。[オンライン]入手可能:https://epc-co.com/epc/jp/設計サポート/egan-fetの信頼性/reliabilityreportphase12
- [19] Meneghini, M., et al., "GaN-based power devices: Physics, reliability, and perspectives," J. Appl. Phys. 130, 181101, 2021
- [20] De Santi, C. et al, "Review on the degradation of GaN-based lateral power transistors," *Advances in Electrical Engineering, Electronics and Energy*, Vol. 1, 100018, 2021
- [21] Lidow, A et al., "Intrinsic Failure Mechanisms in GaN-on-Si Power Transistors", IEEE Power Electronics Magazine, vol. 7, no. 4, pp. 28-35, 2020
- [22] Zhang, S. et al, "GaN Reliability and Lifetime Projections", CIPS 2022; 12th International Conference on Integrated Power Electronics Systems, pp. 1-7, 2022
- [23] Efficient Power Conversion Corporation, "EPC21601 eToF Laser Driver IC," EPC21601 datasheet. [Online]. Available: https://epc-co.com/epc/Portals/0/epc/ documents/datasheets/EPC21601_ datasheet.pdf
- [24] De Santi, C. et al, "Dynamic Performance Characterization Techniques in Gallium Nitride-Based Electronic Devices," Crystals, 11, 1037, 2021
- [25] Wu, Y. et al., "Activation energy of drain-current degradation in GaN HEMTs under high-power DC stress," Microelectronics Reliability, 54, pp. 2668–2674, 2014
- [26] Hu, C. et al., "Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth through Numerical Analysis," *Coatings*, 7, 43, 2017
- [27] JEDEC Standard, "Temperature Cycling," Test Method JESD22-A104F, November 2020
- [28] Cramér, H., Mathematical Methods of Statistics, Princeton Univ. Press (1946)
- [29] JEDEC Standard, "Stress-Test-Driven Qualification of Integrated Circuits," JESD47L, December 2022
- [30] Automotive Electronics Council, "Failure Mechanism Based Stress Test Qualification For Discrete Semiconductors In Automotive Applications," AEC-Q101-Rev E, March 2021
- [31] Norris, K. C., & Landzberg, A. H., "Reliability of Controlled Collapse Interconnections," IBM Journal of Research and Development, 13(3), pp. 266–271, 1969
- [32] Vasudevan, V., and Fan, X., "An Acceleration Model for Lead-Free (SAC) Solder Joint Reliability Under Thermal Cycling," 58th *Electronic Components and Technology Conference*, pp. 139–145, 2008
- [33] Sun, F.Q., Liu, J.C., Cao, Z.Q. et al., "Modified Norris–Landzberg Model and Optimum Design of Temperature Cycling Alt," Strength Mater 48, pp. 135–145, 2016
- [34] Lall, P., Shirgaokar, A., and Arunachalam, D. "Norris–Landzberg Acceleration Factors and Goldmann Constants for SAC305 Lead-Free Electronics." ASME. *J. Electron. Packag.*, 134(3), 031008, 2012
- [35] Deshpande, A., Jiang, Q., Dasgupta, A., and Becker, U., "Fatigue Life of Joint-Scale SAC305 Solder Specimens in Tensile and Shear Mode," 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, pp. 1026-1029, 2019
- [36] Cui, H., "Accelerated Temperature Cycle Test and Coffin-Manson Model for Electronic Packaging," in Annual Reliability and Maintainability Symposium (RAMS), pp. 556-560, 2005
- [37] MSN Weather, https://www.msn.com/en-us/weather/monthlyforecast, January 2023
- [38] N. Kaminski, A. Kopta, "Failure Rates of HiPak Modules Due to Cosmic Rays," Application Note 5SYA 2042-04, 2011
- [39] Lichtenwalner, D. J. et al., "Gate Bias Effects on SiC MOSFET Terrestrial-Neutron Single-Event Burnout," Materials Science Forum, Vol. 1062, pp 463-467, 2022
- [40] Lichtenwalner, D. J. et al., "Accelerated Testing of SiC Power Devices," IEEE International Integrated Reliability Workshop (IIRW), 2020
- [41] Principato F. et al, "Investigation of the Impact of Neutron Irradiation on SiC Power MOSFETs Lifetime by Reliability Tests", Sensors (Basel), 21(16): 5627, Aug. 2021
- [42] Baghaie Yazdi, M. et al, "A concise study of neutron irradiation effects on power MOSFETs and IGBTs", Microelectronics Reliability Vol. 62, pp. 74-78, July 2016
- [43] Sonia, G., Brunner, F., Denker, A. et al., "Proton and heavy ion irradiation effects on AlGaN/GaN HFET devices," IEEE Transactions on Nuclear Science, 53(6), 2006
- [44] Pearton, S.J., Ren, F., Patrick, E., et al., "Review ionizing radiation damage effects on GaN devices," ECS J. Solid State Sci. Technol, 5(2), Q35-Q60, 2015
- [45] Efficient Power Conversion Corporation, "EPC9149 Evaluation Kit.," [Online]. Available: https://epc-co.com/epc/jp/製品/評価基板/epc9149
- [46] Efficient Power Conversion Corporation, "EPC9078 Development Board," [Online]. Available: https://epc-co.com/epc/jp/製品/デモボード/epc9078-ja-jp